DNA-induced dimerization of the Escherichia coli Rep helicase. 1991

K L Chao, and T M Lohman
Department of Biochemistry and Biophysics, Texas A & M University, College Station 77843-2128.

The Escherichia coli Rep protein is a DNA helicase that is involved in DNA replication. We have examined the effects of DNA binding on the assembly state of the Rep protein using small-zone gel permeation chromatography and chemical crosslinking of the protein. Complexes of Rep protein were formed with short single-stranded and duplex hairpin oligodeoxynucleotides with lengths such that only a single Rep monomer could bind per oligodeoxynucleotide (i.e. 2 Rep monomers could not bind contiguously on the oligodeoxynucleotides). In the absence of DNA, Rep protein is monomeric (Mr 72,800) up to concentrations of at least 8 microM (monomer), even in the presence of its nucleotide cofactors (ATP, ADP, ATP-gamma-S). However, the binding of Rep monomers to single-stranded (ss) oligodeoxynucleotides, d(pN)n (12 less than or equal to n less than or equal to 20), induces the Rep monomers to oligomerize. Upon treatment of the Rep-ss oligodeoxynucleotide complexes with the protein crosslinking reagent dimethyl-suberimidate (DMS) and subsequent removal of the DNA, crosslinked Rep dimers are observed, independent of oligodeoxynucleotide length (n less than or equal to 20). Furthermore, short duplex oligodeoxynucleotides also induce the Rep monomers to dimerize. Formation of the Rep dimers results from an actual DNA-induced dimerization, rather than the adventitious crosslinking of Rep monomers bound contiguously to a single oligodeoxynucleotide. The purified DMS-crosslinked Rep dimer shows increased affinity for DNA and retains DNA-dependent ATPase and DNA helicase activities, as shown by its ability to unwind M13 RF DNA in the presence of the bacteriophage f1 gene II protein. On the basis of these observations and since the dimer is the major species when Rep is bound to DNA, we suggest that a DNA-induced Rep dimer is the functionally active form of the Rep helicase.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004120 Dimethyl Suberimidate The methyl imidoester of suberic acid used to produce cross links in proteins. Each end of the imidoester will react with an amino group in the protein molecule to form an amidine. Bismethyl Suberimidate,Dimethylsuberimidate,Suberimidate, Bismethyl,Suberimidate, Dimethyl
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

K L Chao, and T M Lohman
July 1993, Biochemistry,
K L Chao, and T M Lohman
April 1992, Science (New York, N.Y.),
K L Chao, and T M Lohman
January 1984, European journal of biochemistry,
K L Chao, and T M Lohman
September 1996, Proceedings of the National Academy of Sciences of the United States of America,
K L Chao, and T M Lohman
December 2002, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!