Poliovirus thiol proteinase 3C can utilize a serine nucleophile within the putative catalytic triad. 1991

M A Lawson, and B L Semler
Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717.

The picornavirus 3C proteinases are substrate-specific thiol proteases that have been shown by secondary structure predictions and protein modeling studies to be similar to the trypsin-like serine proteases. We have examined several mutations of the 3C proteinase at putative active site and non-active site residues. The effect on 3C-mediated protein processing supports the model of serine protease similarity. In particular, we have shown that 3C can utilize a serine at position 147, which is predicted to supply the nucleophilic residue of the catalytic triad. We suggest that picornavirus 3C proteinases may represent a class of enzymes that have maintained the catalytic mechanism characteristic of a proposed enzyme ancestral to the highly divergent class of serine proteases.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D003546 Cysteine Endopeptidases ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013462 Sulfur Radioisotopes Unstable isotopes of sulfur that decay or disintegrate spontaneously emitting radiation. S 29-31, 35, 37, and 38 are radioactive sulfur isotopes. Radioisotopes, Sulfur
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

M A Lawson, and B L Semler
March 1991, The Journal of biological chemistry,
M A Lawson, and B L Semler
January 2003, Biochemistry,
M A Lawson, and B L Semler
January 2003, Plant & cell physiology,
M A Lawson, and B L Semler
April 2011, Biological chemistry,
M A Lawson, and B L Semler
October 2005, Cellular and molecular life sciences : CMLS,
M A Lawson, and B L Semler
May 1991, Archives of biochemistry and biophysics,
M A Lawson, and B L Semler
June 1989, The Journal of biological chemistry,
Copied contents to your clipboard!