Modulation of respiratory reflexes by an excitatory amino acid mechanism in the ventrolateral medulla. 1991

G H Dillon, and D E Welsh, and T G Waldrop
Department of Physiology and Biophysics, University of Illinois, Urbana 61801.

Results from several studies suggest that the ventrolateral medulla (VLM) is involved in modulating the respiratory response to central and/or peripheral chemoreceptor stimulation. Furthermore, the excitatory amino acid (EAA) glutamate has been shown to have marked effects on respiration when administered to VLM sites. The purpose of this study was to determine if an excitatory amino acid mechanism in the VLM modulates the respiratory responses to hypoxia or hypercapnia in anesthetized rats. Exposure to hypoxic or hypercapnic gas under control conditions elicited increases in respiratory activity (diaphragmatic EMG activity and breathing frequency). Bilateral injection of kynurenic acid (KYN), an EAA antagonist, into rostral VLM sites evoked significant increases in breathing frequency; injections more caudal in the VLM typically caused apnea. Significantly larger increases in respiratory output were elicited by both hypoxia and hypercapnia after rostral VLM microinjections of KYN. The accentuated responses returned to control levels after a recovery of approximately 100 min. Microinjection of xanthurenic acid (XAN), an inactive analog of kynurenic acid, into the VLM prior to KYN had only slight effects on resting respiratory activity and no effects on the responses to hypoxia or hypercapnia. These results suggest two separate VLM sites which modulate respiration by EAA mechanisms. A more rostral site tonically inhibits respiratory activity and the respiratory responses to chemoreceptor stimulation and more caudal VLM sites may be required for the maintenance of respiratory activity.

UI MeSH Term Description Entries
D007736 Kynurenic Acid A broad-spectrum excitatory amino acid antagonist used as a research tool. Kynurenate,Acid, Kynurenic
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D006935 Hypercapnia A clinical manifestation of abnormal increase in the amount of carbon dioxide in arterial blood.
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G H Dillon, and D E Welsh, and T G Waldrop
April 1996, The Journal of physiology,
G H Dillon, and D E Welsh, and T G Waldrop
November 1996, The American journal of physiology,
G H Dillon, and D E Welsh, and T G Waldrop
January 2002, Clinical and experimental pharmacology & physiology,
G H Dillon, and D E Welsh, and T G Waldrop
June 1994, Naunyn-Schmiedeberg's archives of pharmacology,
G H Dillon, and D E Welsh, and T G Waldrop
September 1994, Neuroscience letters,
G H Dillon, and D E Welsh, and T G Waldrop
January 1989, Experimental brain research,
G H Dillon, and D E Welsh, and T G Waldrop
December 1991, The Journal of pharmacology and experimental therapeutics,
G H Dillon, and D E Welsh, and T G Waldrop
September 1992, Neuropharmacology,
G H Dillon, and D E Welsh, and T G Waldrop
December 2004, American journal of physiology. Regulatory, integrative and comparative physiology,
G H Dillon, and D E Welsh, and T G Waldrop
March 2010, Acta neurologica Belgica,
Copied contents to your clipboard!