A novel method for patch-clamp automation. 2006

D Vasilyev, and T Merrill, and A Iwanow, and J Dunlop, and M Bowlby
Discovery Neuroscience, Wyeth Research, CN 8000, Princeton, NJ 08543-8000, USA. vasylyd@wyeth.com

An increasing demand of the pharmaceutical industry for automated electrophysiological stations for ion channel drug discovery has recently resulted in the development of several commercial platforms for secondary and safety screening of ion channel modulators. These commercial systems have demonstrated an enhanced throughput, however, often at the expense of some quality-sensitive aspects of traditional patch-clamp recordings. To improve data quality and content, we have developed a patch-clamp robot that fully automates manual patch-clamp recordings, including patch pipette handling, gigaseal formation, obtaining whole-cell or perforated-cell configuration, drug application, and data acquisition. Utilization of glass micropipettes results in high-quality electrophysiological recordings with an overall success rate of about 30% in perforated-cell mode. A fast drug application system with low volume requirements (1-1.5 ml) allows the study of ligand-gated ion channels on a millisecond scale. As proof-of-concept, we present two assays developed for voltage-gated human ether-a-go-go-related and ligand-gated alpha(7) nicotinic receptor ion channels. The system throughput was a single concentration-response curve every 30-40 min or 12-17 6-point concentration-response curves daily, representing a significant improvement of typical manual patch-clamp throughput. This system represents an efficient method for patch-clamp automation without the need for a complex and expensive electrophysiological set-up for cell visualization.

UI MeSH Term Description Entries
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D051638 Ether-A-Go-Go Potassium Channels A family of voltage-gated potassium channels that are characterized by long N-terminal and C-terminal intracellular tails. They are named from the Drosophila protein whose mutation causes abnormal leg shaking under ether anesthesia. Their activation kinetics are dependent on extracellular MAGNESIUM and PROTON concentration. ERG Potassium Channels,Eag Potassium Channels,Eag-Related Potassium Channels,Ether-A-Go-Go Related Potassium Channels,Eag Related Potassium Channels,Ether A Go Go Potassium Channels,Ether A Go Go Related Potassium Channels,Potassium Channels, ERG,Potassium Channels, Eag,Potassium Channels, Eag-Related,Potassium Channels, Ether-A-Go-Go
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings
D018722 Nicotinic Agonists Drugs that bind to and activate nicotinic cholinergic receptors (RECEPTORS, NICOTINIC). Nicotinic agonists act at postganglionic nicotinic receptors, at neuroeffector junctions in the peripheral nervous system, and at nicotinic receptors in the central nervous system. Agents that function as neuromuscular depolarizing blocking agents are included here because they activate nicotinic receptors, although they are used clinically to block nicotinic transmission. Cholinergic Agonists, Nicotinic,Cholinergic Agonist, Nicotinic,Nicotinic Agonist,Agonist, Nicotinic,Agonist, Nicotinic Cholinergic,Agonists, Nicotinic,Agonists, Nicotinic Cholinergic,Nicotinic Cholinergic Agonist,Nicotinic Cholinergic Agonists

Related Publications

D Vasilyev, and T Merrill, and A Iwanow, and J Dunlop, and M Bowlby
July 1987, Biophysical journal,
D Vasilyev, and T Merrill, and A Iwanow, and J Dunlop, and M Bowlby
May 1993, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
D Vasilyev, and T Merrill, and A Iwanow, and J Dunlop, and M Bowlby
October 2019, Journal of neuroscience methods,
D Vasilyev, and T Merrill, and A Iwanow, and J Dunlop, and M Bowlby
September 1998, Hua xi yi ke da xue xue bao = Journal of West China University of Medical Sciences = Huaxi yike daxue xuebao,
D Vasilyev, and T Merrill, and A Iwanow, and J Dunlop, and M Bowlby
January 2009, Combinatorial chemistry & high throughput screening,
D Vasilyev, and T Merrill, and A Iwanow, and J Dunlop, and M Bowlby
July 1993, Annals of the New York Academy of Sciences,
D Vasilyev, and T Merrill, and A Iwanow, and J Dunlop, and M Bowlby
January 1994, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
D Vasilyev, and T Merrill, and A Iwanow, and J Dunlop, and M Bowlby
May 2010, Future medicinal chemistry,
D Vasilyev, and T Merrill, and A Iwanow, and J Dunlop, and M Bowlby
January 2005, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
D Vasilyev, and T Merrill, and A Iwanow, and J Dunlop, and M Bowlby
January 2002, Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc,
Copied contents to your clipboard!