Central angiotensin II receptors mediate hemodynamic response variability to stressors. 2006

Kayla D Rowe, and Julie A Schwartz, and Lance L Lomax, and Mark M Knuepfer
Dept. of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, MO 63104, USA.

We examined whether ANG II receptors in the central nervous system mediate hemodynamic responses to pharmacological (cocaine) and behavioral (cold water) stressors. After administration of cocaine (5 mg/kg iv), rats were classified as vascular responders (VR) if their pressor response was due entirely to an increase in systemic vascular resistance (SVR) despite a decrease in cardiac output (CO). Cocaine elicited a pressor response in mixed responders (MR) that was dependent on small increases in both SVR and CO. ANG II (30 ng/5 microl icv, 5 min before cocaine) augmented the decrease in CO in VR and prevented the increase in CO in MR. Administration of [Sar(1),Thr(8)]ANG II (20 microg/5 microl icv; sarthran) before cocaine attenuated the decrease in CO and the large increase in SVR in VR so that they were no longer different from MR. Losartan (20 microg icv) or captopril (50 microg icv) preceding cocaine administration also attenuated the decrease in CO and the large increase in SVR seen in VR only. The role of angiotensin was not specific for cocaine, because ANG II (icv) pretreatment before startle with cold water (1 cm deep) enhanced the decrease in CO and the increase in SVR in both MR and VR, whereas losartan (icv) pretreatment before startle attenuated the decrease in CO and the increase in SVR in VR so that they were no longer different from MR. These data suggest that central ANG II receptors mediate the greater vascular and cardiac responsiveness in vascular responders to acute pharmacological and behavioral stressors.

UI MeSH Term Description Entries
D008297 Male Males
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D000806 Angiotensin-Converting Enzyme Inhibitors A class of drugs whose main indications are the treatment of hypertension and heart failure. They exert their hemodynamic effect mainly by inhibiting the renin-angiotensin system. They also modulate sympathetic nervous system activity and increase prostaglandin synthesis. They cause mainly vasodilation and mild natriuresis without affecting heart rate and contractility. ACE Inhibitor,ACE Inhibitors,Angiotensin Converting Enzyme Inhibitor,Angiotensin I-Converting Enzyme Inhibitor,Angiotensin-Converting Enzyme Inhibitor,Kininase II Inhibitor,Kininase II Inhibitors,Angiotensin I-Converting Enzyme Inhibitors,Angiotensin-Converting Enzyme Antagonists,Antagonists, Angiotensin-Converting Enzyme,Antagonists, Kininase II,Inhibitors, ACE,Inhibitors, Angiotensin-Converting Enzyme,Inhibitors, Kininase II,Kininase II Antagonists,Angiotensin Converting Enzyme Antagonists,Angiotensin Converting Enzyme Inhibitors,Angiotensin I Converting Enzyme Inhibitor,Angiotensin I Converting Enzyme Inhibitors,Antagonists, Angiotensin Converting Enzyme,Enzyme Antagonists, Angiotensin-Converting,Enzyme Inhibitor, Angiotensin-Converting,Enzyme Inhibitors, Angiotensin-Converting,II Inhibitor, Kininase,Inhibitor, ACE,Inhibitor, Angiotensin-Converting Enzyme,Inhibitor, Kininase II,Inhibitors, Angiotensin Converting Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013047 Specific Pathogen-Free Organisms Animals or humans raised in the absence of a particular disease-causing virus or other microorganism. Less frequently plants are cultivated pathogen-free. Pathogen-Free Organisms,Specific Pathogen Free,Organism, Pathogen-Free,Organism, Specific Pathogen-Free,Organisms, Pathogen-Free,Organisms, Specific Pathogen-Free,Pathogen Free Organisms,Pathogen Free, Specific,Pathogen Frees, Specific,Pathogen-Free Organism,Pathogen-Free Organism, Specific,Pathogen-Free Organisms, Specific,Specific Pathogen Free Organisms,Specific Pathogen-Free Organism
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic

Related Publications

Kayla D Rowe, and Julie A Schwartz, and Lance L Lomax, and Mark M Knuepfer
January 2010, Brain research,
Kayla D Rowe, and Julie A Schwartz, and Lance L Lomax, and Mark M Knuepfer
January 1998, Brain research bulletin,
Kayla D Rowe, and Julie A Schwartz, and Lance L Lomax, and Mark M Knuepfer
October 2003, Hypertension (Dallas, Tex. : 1979),
Kayla D Rowe, and Julie A Schwartz, and Lance L Lomax, and Mark M Knuepfer
July 2008, American journal of physiology. Regulatory, integrative and comparative physiology,
Kayla D Rowe, and Julie A Schwartz, and Lance L Lomax, and Mark M Knuepfer
February 1996, Annals of surgery,
Kayla D Rowe, and Julie A Schwartz, and Lance L Lomax, and Mark M Knuepfer
March 2002, American journal of physiology. Regulatory, integrative and comparative physiology,
Kayla D Rowe, and Julie A Schwartz, and Lance L Lomax, and Mark M Knuepfer
January 1986, Polish journal of pharmacology and pharmacy,
Kayla D Rowe, and Julie A Schwartz, and Lance L Lomax, and Mark M Knuepfer
May 1993, The American journal of physiology,
Kayla D Rowe, and Julie A Schwartz, and Lance L Lomax, and Mark M Knuepfer
December 1991, Kidney international,
Kayla D Rowe, and Julie A Schwartz, and Lance L Lomax, and Mark M Knuepfer
March 2001, Brain research,
Copied contents to your clipboard!