Calcium- and cyclic-AMP-mediated secretory responses in isolated colonic crypts. 1991

M Böhme, and M Diener, and W Rummel
Institut für Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg/Saar, Federal Republic of Germany.

Whole-cell recordings were performed at isolated crypts from the distal colon of the rat. Enterocytes in intact crypts, patched from the basolateral side, exhibited a gradient in the resting zero-current potential. Along the axis of the crypt, the highest potentials were measured in the ground region, the lowest in the surface region. The cholinergic agonist, carbachol, induced a hyperpolarization and an increase of the outward current in both the middle and the ground cells of intact crypts. This effect could be prevented by Ba2+ or by the intracellular Ca2+ antagonist, 8-(N, N-diethylamino)-octyl-3,4,5-trimethoxy-benzoate hydrochloride (TMB-8). Its action, however, was not dependent on the presence of external Ca2+. Both ground cells and the cells in the middle part of the crypt responded to forskolin, an activator of the adenylate cyclase, with a depolarization. In the middle part of the crypt, the depolarization induced by forskolin was associated with an increase of the outward current. It could be blocked by the Cl- channel blocker, 5-nitro-2-(3-phenylpropylamino)-benzoate, indicating an increase of Cl- conductance. In contrast, the forskolin-induced depolarization in the ground part of the crypt was associated with a decrease of the outward current. This effect could be prevented by Ba2+, indicating a decrease of a potassium conductance. The changes in outward current could be prevented by the presence of an inhibitor of protein kinase A in the pipette solution. In conclusion, these results suggest that carbachol, an agonist acting on the Ca2+ pathway, indirectly causes Cl- secretion by an increase of the driving force, i.e. the membrane potential. Only the activation of cyclic AMP synthesis by forskolin is able to increase Cl- conductance in the rat colon. The latter response seems to be dependent on the state of differentiation of the enterocytes.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D005260 Female Females
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Böhme, and M Diener, and W Rummel
January 1984, Peptides,
M Böhme, and M Diener, and W Rummel
February 2001, The Journal of pharmacy and pharmacology,
M Böhme, and M Diener, and W Rummel
January 2001, Cells, tissues, organs,
M Böhme, and M Diener, and W Rummel
July 1987, British journal of pharmacology,
M Böhme, and M Diener, and W Rummel
November 1995, The Journal of clinical investigation,
M Böhme, and M Diener, and W Rummel
January 1988, The Japanese journal of physiology,
M Böhme, and M Diener, and W Rummel
March 1972, Nihon rinsho. Japanese journal of clinical medicine,
M Böhme, and M Diener, and W Rummel
December 1971, Experimental cell research,
M Böhme, and M Diener, and W Rummel
February 1996, The Journal of biological chemistry,
Copied contents to your clipboard!