Biodistribution of covalent antithrombin-heparin complexes. 2006

Paul A Chindemi, and Petr Klement, and Filip Konecny, and Leslie R Berry, and Anthony K C Chan
Henderson Research Centre, 711 Concession Street, Hamilton, Ontario, Canada L8V 1C3.

We have developed a covalent antithrombin-heparin (ATH) complex with advantages compared to non-covalent antithrombin:heparin (AT:H) mixtures. In addition to increased activity, ATH has a longer intravenous half-life that is partly due to reduced plasma protein binding. Given ATH's altered clearance, we investigated biodistribution of ATH in vivo. ATH made from either human plasma-derived AT (pATH) or recombinant human (produced in goats) AT (rhATH) was studied. 125I-ATH + unlabeled carrier was injected into rabbits at different doses. 131I-labeled albumin was administered just before sacrifice as a marker for trapped blood in tissues. Immediately after sacrifice, animal components were removed, weighed, and subsamples were counted for gamma-radioactivity. Percent recoveries of ATH in various organs/compartments at different time points were calculated, and kinetic distribution plots generated. At saturating doses, early disappearance of rhATH from the circulation was much faster than pATH. Co-incident with clearance, 26 +/- 3% of dose for rhATH was liver-associated compared to only 3.7 +/- 0.5% for pATH by 20 min. Also, at early time periods, >60% of all extravascular ATH was liver-associated. Analysis of the vena cava and aorta suggested that vessel wall binding might also account for initial plasma loss of rhATH. By 24 h, most of pATH and rhATH were present as urinary degradation products (51 +/- 3% and 63 +/- 8%, respectively). In summary, systemic elimination of ATH is greatly influenced by the form of AT in the complex, with liver uptake and degradation playing a major role.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000925 Anticoagulants Agents that prevent BLOOD CLOTTING. Anticoagulant Agent,Anticoagulant Drug,Anticoagulant,Anticoagulant Agents,Anticoagulant Drugs,Anticoagulation Agents,Indirect Thrombin Inhibitors,Agent, Anticoagulant,Agents, Anticoagulant,Agents, Anticoagulation,Drug, Anticoagulant,Drugs, Anticoagulant,Inhibitors, Indirect Thrombin,Thrombin Inhibitors, Indirect

Related Publications

Paul A Chindemi, and Petr Klement, and Filip Konecny, and Leslie R Berry, and Anthony K C Chan
January 2007, Thrombosis research,
Paul A Chindemi, and Petr Klement, and Filip Konecny, and Leslie R Berry, and Anthony K C Chan
October 2003, Biochemical and biophysical research communications,
Paul A Chindemi, and Petr Klement, and Filip Konecny, and Leslie R Berry, and Anthony K C Chan
August 1997, The Journal of biological chemistry,
Paul A Chindemi, and Petr Klement, and Filip Konecny, and Leslie R Berry, and Anthony K C Chan
April 1982, The Journal of biological chemistry,
Paul A Chindemi, and Petr Klement, and Filip Konecny, and Leslie R Berry, and Anthony K C Chan
March 1986, The Journal of biological chemistry,
Paul A Chindemi, and Petr Klement, and Filip Konecny, and Leslie R Berry, and Anthony K C Chan
April 1983, Thrombosis and haemostasis,
Paul A Chindemi, and Petr Klement, and Filip Konecny, and Leslie R Berry, and Anthony K C Chan
January 1982, Acta haematologica Polonica,
Paul A Chindemi, and Petr Klement, and Filip Konecny, and Leslie R Berry, and Anthony K C Chan
June 1982, FEBS letters,
Paul A Chindemi, and Petr Klement, and Filip Konecny, and Leslie R Berry, and Anthony K C Chan
July 2002, Circulation,
Paul A Chindemi, and Petr Klement, and Filip Konecny, and Leslie R Berry, and Anthony K C Chan
December 1998, The Journal of biological chemistry,
Copied contents to your clipboard!