Endogenous opioids modulate neuronal survival in the developing avian ciliary ganglion. 1991

S D Meriney, and M J Ford, and D Oliva, and G Pilar
Department of Physiology and Neurobiology, University of Connecticut, Storrs 06269.

Most studies on the trophic regulation of the normal neuronal competition for survival have focused on interactions between neurons and their target environment. However, it is also likely that trophic modulators are released from premotor inputs onto motoneurons. We have examined the developmental distribution of endogenous enkephalin-like immunoreactivity and the role that these endogenous opioid peptides play in normal neuronal degeneration. During the early portion of the normal cell death period, enkephalin-like immunoreactivity is highest within preganglionic cell bodies in the midbrain and their nerve terminals in the ciliary ganglion. Exogenous daily morphine administration to the chick embryo has previously been shown to delay most of the normal neuronal death in the ciliary ganglion (see Meriney et al., 1985). We hypothesized that opiate receptor activation increases the probability that ciliary ganglion neurons will survive their developmental competition and, further, that the endogenous opioid peptides in the ciliary ganglion normally modulate this competition. However, in our previous report (Meriney et al., 1985), we noted that daily administration of the antagonist naloxone to the chorioallantoic membrane did not significantly alter neuronal survival, as would have been expected if endogenous opioids were involved in regulating cell death. In contrast, in this report we show that three times daily application of naltrexone (a long-lasting opiate antagonist) significantly decreased neuronal survival among the ciliary ganglion cells, and that the surviving cells were not ultrastructurally different than neurons from controls of the same developmental stage. To control for toxic effects of naltrexone, we performed cell counts following naltrexone, we performed cell counts following naltrexone treatment in another population of cholinergic motoneurons (lumbar spinal motoneurons). In this population of cells, the total number of motoneurons remains unchanged following naltrexone treatment. To test for a specific toxic effect on the neurons of the ciliary ganglion, we generated a dose-response curve for toxicity in vitro and determined that naltrexone was not toxic over concentration ranges that are likely to exist in vivo. It appears, therefore, that a multiple daily antagonist application protocol blocks opiate receptors sufficiently in the ciliary ganglion to decrease an endogenous opiate influence significantly. We tested the possibility that endogenous opioids exert their effect by modifying transmission at peripheral and ganglionic synapses. In the generally accepted hypothesis, paralysis at the peripheral nerve-striated muscle synapse would rescue cells, while paralysis of ganglionic synapses would decrease survival. Iris neuromuscular junctions onto striated muscle cells were not blocked by opioids, but neuromuscular transmission in the smooth muscle of the choroid coat was blocked.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin

Related Publications

S D Meriney, and M J Ford, and D Oliva, and G Pilar
December 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S D Meriney, and M J Ford, and D Oliva, and G Pilar
February 1995, Journal of the autonomic nervous system,
S D Meriney, and M J Ford, and D Oliva, and G Pilar
January 1980, Journal of neurophysiology,
S D Meriney, and M J Ford, and D Oliva, and G Pilar
November 2015, Developmental neurobiology,
S D Meriney, and M J Ford, and D Oliva, and G Pilar
May 2001, Developmental biology,
S D Meriney, and M J Ford, and D Oliva, and G Pilar
October 1983, Brain research,
S D Meriney, and M J Ford, and D Oliva, and G Pilar
January 2018, Frontiers in physiology,
S D Meriney, and M J Ford, and D Oliva, and G Pilar
June 1995, Neuroscience letters,
S D Meriney, and M J Ford, and D Oliva, and G Pilar
January 1967, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
S D Meriney, and M J Ford, and D Oliva, and G Pilar
March 1995, Experimental eye research,
Copied contents to your clipboard!