Periodicity of amide proton exchange rates in a coiled-coil leucine zipper peptide. 1991

E M Goodman, and P S Kim
Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge 02142.

The two-stranded coiled-coil motif, which includes leucine zippers, is a simple protein structure that is well suited for studies of helix-helix interactions. The interaction between helices in a coiled coil involves packing of "knobs" into "holes", as predicted by Crick in 1953 and confirmed recently by X-ray crystallography for the GCN4 leucine zipper [O'Shea, E.K., Klemm, J.D., Kim, P.S., & Alber, T. (1991) Science 254, 539]. A striking periodicity, extending over six helical turns, is observed in the rates of hydrogen-deuterium exchange for amide protons in a peptide corresponding to the leucine zipper of GCN4. Protons at the hydrophobic interface show the most protection from exchange. The NMR chemical shifts of amide protons in the helices also show a pronounced periodicity which predicts a short H-bond followed by a long H-bond every seven residues. This variation was anticipated in 1953 by Pauling and is sufficient to give rise to a local left-handed superhelical twist characteristic of coiled coils. The amide protons that lie at the base of the "hole" in the "knobs-into-holes" packing show slow amide proton exchange rates and are predicted to have short H-bond lengths. These results suggest that tertiary interactions can lead to highly localized, but substantial, differences in stability and dynamics within a secondary structure element and emphasize the dominant nature of packing interactions in determining protein structure.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal

Related Publications

E M Goodman, and P S Kim
January 1989, Science (New York, N.Y.),
E M Goodman, and P S Kim
January 1991, Proceedings of the National Academy of Sciences of the United States of America,
E M Goodman, and P S Kim
January 2007, Angewandte Chemie (International ed. in English),
E M Goodman, and P S Kim
January 2013, Faraday discussions,
E M Goodman, and P S Kim
October 1991, Science (New York, N.Y.),
E M Goodman, and P S Kim
November 2018, Journal of computational biology : a journal of computational molecular cell biology,
E M Goodman, and P S Kim
February 2007, Protein science : a publication of the Protein Society,
E M Goodman, and P S Kim
February 2010, Protein science : a publication of the Protein Society,
Copied contents to your clipboard!