Mucosal defence along the gastrointestinal tract of cats and dogs. 2006

Chris Stokes, and Nashwa Waly
Division of Veterinary Pathology Infection and Immunity, School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, BS40 5DU, United Kingdom. Chris.Stokes@bristol.ac.uk

Diseases that are associated with infections or allergic reactions in the gastrointestinal and respiratory tracts are major causes of morbidity in both cats and dogs. Future strategies for the control of these conditions require a greater understanding of the cellular and molecular mechanisms involved in the induction and regulation of responses at the mucosal surfaces. Historically, the majority of the fundamental studies have been carried out in rodents or with tissues obtained from man, but the expanding range of reagents available for the study of farm and companion animals provides opportunities for study in a wider range of animals including cats and dogs. To date, these studies have tended to be focussed on characterising the cellular distributions in healthy animals and in groups of cats and dogs identified as having an increased risk of mucosal disturbance. Where species comparisons of mucosal immune systems have been made, the results have tended to be divided between monogastric and ruminant animals. It is then not surprising that the mucosal immune systems of both cats and dogs bear greatest similarity to that documented for man and pigs. For example, IgA is the dominant immunoglobulin in mucosal secretions of cats and dogs and oral tolerance can be induced following the introduction of novel antigens into the diet. Also like several other species, cats become transiently hypersensitive to the newly introduced dietary antigen prior to the establishment of tolerance. In contrast, there are a number of potentially important differences. In particular, there are significant differences between cats and dogs in the expression MHC class II molecules on gut epithelial cells. Similarly, it has been reported that cats have elevated numbers of intraepithelial lymphocytes (IEL) and that a proportion of these express surface IgM. It remains to be determined if these differences reflect the way in which the animals are maintained and if they may have greater biological significance.

UI MeSH Term Description Entries
D007239 Infections Invasion of the host organism by microorganisms or their toxins or by parasites that can cause pathological conditions or diseases. Infection,Infection and Infestation,Infections and Infestations,Infestation and Infection,Infestations and Infections
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D002371 Cat Diseases Diseases of the domestic cat (Felis catus or F. domesticus). This term does not include diseases of the so-called big cats such as CHEETAHS; LIONS; tigers, cougars, panthers, leopards, and other Felidae for which the heading CARNIVORA is used. Feline Diseases,Cat Disease,Disease, Cat,Disease, Feline,Diseases, Cat,Diseases, Feline,Feline Disease
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004283 Dog Diseases Diseases of the domestic dog (Canis familiaris). This term does not include diseases of wild dogs, WOLVES; FOXES; and other Canidae for which the heading CARNIVORA is used. Canine Diseases,Canine Disease,Disease, Canine,Disease, Dog,Diseases, Canine,Diseases, Dog,Dog Disease
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D018928 Immunity, Mucosal Nonsusceptibility to the pathogenic effects of foreign microorganisms or antigenic substances as a result of antibody secretions of the mucous membranes. Mucosal epithelia in the gastrointestinal, respiratory, and reproductive tracts produce a form of IgA (IMMUNOGLOBULIN A, SECRETORY) that serves to protect these ports of entry into the body. Immune Response, Mucosal,Mucosal Immunity,Immune Responses, Mucosal,Mucosal Immune Response,Mucosal Immune Responses

Related Publications

Chris Stokes, and Nashwa Waly
October 1971, Laboratory animals,
Chris Stokes, and Nashwa Waly
December 1994, The Journal of nutrition,
Chris Stokes, and Nashwa Waly
September 1991, Journal of veterinary pharmacology and therapeutics,
Chris Stokes, and Nashwa Waly
December 2003, New Zealand veterinary journal,
Chris Stokes, and Nashwa Waly
January 1984, The Netherlands journal of medicine,
Chris Stokes, and Nashwa Waly
December 1999, Gut,
Chris Stokes, and Nashwa Waly
January 1979, Major problems in pathology,
Chris Stokes, and Nashwa Waly
January 1973, Major problems in pathology,
Chris Stokes, and Nashwa Waly
December 2017, Microbes and environments,
Chris Stokes, and Nashwa Waly
May 2005, Molecular immunology,
Copied contents to your clipboard!