Temporal processing in the dorsal medullary nucleus of the Northern leopard frog (Rana pipiens pipiens). 1991

J C Hall, and A S Feng
Department of Physiology and Biophysics, University of Illinois, Urbana 61801.

1. Single-unit responses to different temporal acoustic parameters were characterized in the dorsal medullary nucleus (DMN) of the Northern leopard frog, Rana pipiens pipiens. Our goal was to provide both a quantitative and a qualitative assessment of the neural representation of behaviorally relevant temporal acoustic patterns in the frog's DMN. 2. Acoustic stimuli included tone bursts having different durations, rise times, or rates of amplitude modulation (AM). Several metrics were used to compute temporal response functions for each of these, including mean spike count, average firing rate, and/or peak firing rate. Synchronization coefficients were also used to characterize responses to stimuli presented at different AM rates. 3. On the basis of mean spike count, the temporal response functions of DMN neurons with respect to signal rise time could be characterized as 1) all-pass, in which the mean spike count was largely independent of rise time, or 2) fast-pass, in which the mean spike count decreased with increasing rise time. Fast-pass response functions were of two types, those that decayed rapidly and those that decayed gradually from their peak values. 4. The minimum threshold varied with signal rise time for cells showing fast-pass but not all-pass response functions. Minimum response thresholds for fast-pass neurons were typically higher with slower signal rise time. 5. The filtering characteristics of cells displaying fast-pass rise time response functions were dependent on signal level, becoming all-pass when signal levels exceeded 30-40 dB above the minimum threshold. 6. Approximately 44% of DMN neurons exhibiting fast-pass response functions for signal rise time showed all-pass filtering characteristics when broadband noise rather than best frequency tones were used, thereby signifying an influence of signal spectrum on the pass-band characteristics of these cells. 7. All DMN neurons, regardless of discharge pattern, showed maximal instantaneous firing rates to signals having short (less than 25 ms) rise times. Response functions based on instantaneous firing rate were, therefore, fast-pass in nature. These responses were independent of signal level and spectrum. 8. There was an ordinal relationship between signal duration and the duration of tonic but not phasic unit discharges. This relationship was not intensity dependent. 9. On the basis of mean spike count, the temporal response functions of DMN neurons with respect to signal duration were characterized as 1) all-pass, in which the mean spike count was largely independent of signal duration, or 2) long-pass, in which the mean spike count increased with increasing signal duration.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory

Related Publications

J C Hall, and A S Feng
March 1996, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
J C Hall, and A S Feng
November 2004, Evolution; international journal of organic evolution,
J C Hall, and A S Feng
January 1970, The Journal of infectious diseases,
J C Hall, and A S Feng
April 2006, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
J C Hall, and A S Feng
March 1996, The Journal of comparative neurology,
J C Hall, and A S Feng
May 2006, Environmental toxicology and chemistry,
J C Hall, and A S Feng
January 2003, Environmental toxicology and chemistry,
J C Hall, and A S Feng
March 1982, Neuroscience letters,
J C Hall, and A S Feng
November 1994, The Journal of the Acoustical Society of America,
Copied contents to your clipboard!