Akt regulates basal and induced processing of NF-kappaB2 (p100) to p52. 2006

Jason A Gustin, and Chandrashekhar K Korgaonkar, and Roxana Pincheira, and Qiutang Li, and David B Donner
Department of Microbiology and Immunology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

NF-kappaB is a family of transcription factors important for innate and adaptive immunity. NF-kappaB is restricted to the cytoplasm by inhibitory proteins that are degraded when specifically phosphorylated, permitting NF-kappaB to enter the nucleus and activate target genes. Phosphorylation of the inhibitory proteins is mediated by an IkappaB kinase (IKK) complex, which can be composed of two subunits with enzymatic activity, IKKalpha and IKKbeta. The preferred substrate for IKKbeta is IkappaBalpha, degradation of which liberates p65 (RelA) to enter the nucleus where it induces genes important to innate immunity. IKKalpha activates a non-canonical NF-kappaB pathway in which p100 (NF-kappaB2) is processed to p52. Once produced, p52 can enter the nucleus and induce genes important to adaptive immunity. This study shows that Akt binds to and increases the activity of IKKalpha and thereby increases p52 production in cells. Constitutively active Akt augments non-canonical NF-kappaB activity, whereas kinase dead Akt or inhibition of phosphatidylinositol 3-kinase have the opposite effect. Basal and ligand-induced p52 production is reduced in mouse embryo fibroblasts deficient in Akt1 and Akt2 compared with parental cells. These observations show that Akt plays a role in activation of basal and induced non-canonical NF-kappaB activity.

UI MeSH Term Description Entries
D007109 Immunity Nonsusceptibility to the invasive or pathogenic effects of foreign microorganisms or to the toxic effect of antigenic substances. Immune Process,Immune Response,Immune Processes,Immune Responses,Process, Immune,Response, Immune
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins

Related Publications

Jason A Gustin, and Chandrashekhar K Korgaonkar, and Roxana Pincheira, and Qiutang Li, and David B Donner
October 2002, The EMBO journal,
Jason A Gustin, and Chandrashekhar K Korgaonkar, and Roxana Pincheira, and Qiutang Li, and David B Donner
February 2001, Molecular cell,
Jason A Gustin, and Chandrashekhar K Korgaonkar, and Roxana Pincheira, and Qiutang Li, and David B Donner
September 2008, EMBO reports,
Jason A Gustin, and Chandrashekhar K Korgaonkar, and Roxana Pincheira, and Qiutang Li, and David B Donner
September 2003, The Journal of biological chemistry,
Jason A Gustin, and Chandrashekhar K Korgaonkar, and Roxana Pincheira, and Qiutang Li, and David B Donner
October 2003, Oncogene,
Jason A Gustin, and Chandrashekhar K Korgaonkar, and Roxana Pincheira, and Qiutang Li, and David B Donner
October 2009, The Journal of clinical investigation,
Jason A Gustin, and Chandrashekhar K Korgaonkar, and Roxana Pincheira, and Qiutang Li, and David B Donner
July 2003, Oncogene,
Jason A Gustin, and Chandrashekhar K Korgaonkar, and Roxana Pincheira, and Qiutang Li, and David B Donner
November 1996, Molecular and cellular biology,
Jason A Gustin, and Chandrashekhar K Korgaonkar, and Roxana Pincheira, and Qiutang Li, and David B Donner
January 2013, Journal of immunology (Baltimore, Md. : 1950),
Jason A Gustin, and Chandrashekhar K Korgaonkar, and Roxana Pincheira, and Qiutang Li, and David B Donner
May 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
Copied contents to your clipboard!