Expression of corticotropin-releasing factor and CRF receptors in micturition pathways after cyclophosphamide-induced cystitis. 2006

Jennifer LaBerge, and Susan E Malley, and Katarina Zvarova, and Margaret A Vizzard
Dept. of Anatomy, University of Vermont College of Medicine, Burlington, VT 05405, USA.

Corticotropin-releasing factor (CRF) is a prominent neuropeptide involved in micturition reflexes, and different roles in these reflexes have been suggested. These studies examined the expression of CRF in the urinary bladder and lumbosacral sacral parasympathetic nucleus (SPN) in response to cyclophosphamide (CYP)-induced cystitis (4 h, 48 h, or chronic) in rats. The expression of CRF receptors, CRF(1) and CRF(2), was examined in urinary bladder from control and CYP-treated rats. Urinary bladder and lumbosacral spinal cord were harvested from rats killed by isoflurane (4%) and thoracotomy. CRF protein expression in whole urinary bladders significantly (P < or = 0.01) increased with 48 h or chronic CYP treatment. CRF immunoreactivity (IR) was increased significantly (P < or = 0.01) in the urothelium and SPN after CYP treatment. CRF IR nerve fibers increased in density in the suburothelial plexus and detrusor smooth muscle whole mounts with CYP-induced cystitis. CRF(2) receptor transcript was expressed in the urothelium or detrusor smooth muscle, and CRF(2) receptor expression increased in whole bladder with CYP-treatment, whereas no CRF(1) receptor transcript was expressed in either urothelium or detrusor. Immunohistochemical studies demonstrated CRF(2) IR in urinary bladder nerve fibers and urothelial cells from control animals, whereas no CRF(1) IR was observed. These studies demonstrated changes in the expression of CRF in urinary bladder and SPN region with CYP-induced cystitis and CRF receptor (CRF(2)) expression in nerve fibers and urothelium in control rats. CRF may contribute to urinary bladder overactivity and altered sensory processing with CYP-induced cystitis.

UI MeSH Term Description Entries
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D003556 Cystitis Inflammation of the URINARY BLADDER, either from bacterial or non-bacterial causes. Cystitis is usually associated with painful urination (dysuria), increased frequency, urgency, and suprapubic pain. Cystitides
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation

Related Publications

Jennifer LaBerge, and Susan E Malley, and Katarina Zvarova, and Margaret A Vizzard
February 2003, American journal of physiology. Regulatory, integrative and comparative physiology,
Jennifer LaBerge, and Susan E Malley, and Katarina Zvarova, and Margaret A Vizzard
June 2000, The Journal of pharmacology and experimental therapeutics,
Jennifer LaBerge, and Susan E Malley, and Katarina Zvarova, and Margaret A Vizzard
March 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Jennifer LaBerge, and Susan E Malley, and Katarina Zvarova, and Margaret A Vizzard
January 2002, Receptors & channels,
Jennifer LaBerge, and Susan E Malley, and Katarina Zvarova, and Margaret A Vizzard
September 1968, Nihon Ishikai zasshi. Journal of the Japan Medical Association,
Jennifer LaBerge, and Susan E Malley, and Katarina Zvarova, and Margaret A Vizzard
May 1987, No shinkei geka. Neurological surgery,
Jennifer LaBerge, and Susan E Malley, and Katarina Zvarova, and Margaret A Vizzard
July 1966, Horumon to rinsho. Clinical endocrinology,
Jennifer LaBerge, and Susan E Malley, and Katarina Zvarova, and Margaret A Vizzard
May 1969, Nihon rinsho. Japanese journal of clinical medicine,
Jennifer LaBerge, and Susan E Malley, and Katarina Zvarova, and Margaret A Vizzard
May 2006, Cell and tissue research,
Jennifer LaBerge, and Susan E Malley, and Katarina Zvarova, and Margaret A Vizzard
May 2012, Maturitas,
Copied contents to your clipboard!