Flexibility and conformational entropy in protein-protein binding. 2006

Raik Grünberg, and Michael Nilges, and Johan Leckner
Unité de Bioinformatique Structurale, CNRS URA 2185, Institut Pasteur, 25-28 rue du docteur Roux, F-75015 Paris, France.

To better understand the interplay between protein-protein binding and protein dynamics, we analyzed molecular dynamics simulations of 17 protein-protein complexes and their unbound components. Complex formation does not restrict the conformational freedom of the partner proteins as a whole, but, rather, it leads to a redistribution of dynamics. We calculate the change in conformational entropy for seven complexes with quasiharmonic analysis. We see significant loss, but also increased or unchanged conformational entropy. Where comparison is possible, the results are consistent with experimental data. However, stringent error estimates based on multiple independent simulations reveal large uncertainties that are usually overlooked. We observe substantial gains of pseudo entropy in individual partner proteins, and we observe that all complexes retain residual stabilizing intermolecular motions. Consequently, protein flexibility has an important influence on the thermodynamics of binding and may disfavor as well as favor association. These results support a recently proposed unified model for flexible protein-protein association.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004798 Enzymes Biological molecules that possess catalytic activity. They may occur naturally or be synthetically created. Enzymes are usually proteins, however CATALYTIC RNA and CATALYTIC DNA molecules have also been identified. Biocatalyst,Enzyme,Biocatalysts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

Raik Grünberg, and Michael Nilges, and Johan Leckner
February 2019, Journal of the American Chemical Society,
Raik Grünberg, and Michael Nilges, and Johan Leckner
March 2022, Acta crystallographica. Section F, Structural biology communications,
Raik Grünberg, and Michael Nilges, and Johan Leckner
December 2017, Nature communications,
Raik Grünberg, and Michael Nilges, and Johan Leckner
December 1999, Nature structural biology,
Raik Grünberg, and Michael Nilges, and Johan Leckner
January 1991, Ciba Foundation symposium,
Raik Grünberg, and Michael Nilges, and Johan Leckner
August 1979, Nature,
Raik Grünberg, and Michael Nilges, and Johan Leckner
February 2011, Proteins,
Raik Grünberg, and Michael Nilges, and Johan Leckner
August 2008, Biopolymers,
Raik Grünberg, and Michael Nilges, and Johan Leckner
October 2010, Journal of the American Chemical Society,
Raik Grünberg, and Michael Nilges, and Johan Leckner
February 2011, Proteins,
Copied contents to your clipboard!