Inducing hepatic differentiation of human mesenchymal stem cells in pellet culture. 2006

Shin-Yeu Ong, and Hui Dai, and Kam W Leong
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Extensive cell-cell or cell-matrix interaction in three-dimensional (3D) culture is important for the maintenance of adult hepatocyte function and the maturation of hepatic progenitors. However, although there is significant interest in inducing the transdifferentiation of adult stem cells into the hepatic lineage, very few studies have been conducted in a 3D culture configuration. The aim of this study is to investigate the differentiation of mesenchymal stem cells (MSC) into hepatocytes in a pellet configuration, with or without the presence of small intestinal submucosa (SIS). After 4 weeks of differentiation with growth factors bFGF, HGF, and OsM, we obtained hepatocyte-like cells that expressed a subset of hepatic genes, secreted albumin and urea, stored glycogen, and showed inducible CYP3A4 mRNA levels. When these cells were implanted into livers of hepatectomized rats, they secreted human albumin into the bloodstream. The hepatic differentiation of MSC was faster in cell pellets without SIS. The plausible explanations for this finding may be related to the mass transport issues of the two different pellets and the role of cell-cell contact over cell-matrix interactions. The findings of this study should help in the design of optimal culture configurations for efficient hepatic differentiation of adult stem cells.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D051544 Cytochrome P-450 CYP3A A cytochrome P-450 suptype that has specificity for a broad variety of lipophilic compounds, including STEROIDS; FATTY ACIDS; and XENOBIOTICS. This enzyme has clinical significance due to its ability to metabolize a diverse array of clinically important drugs such as CYCLOSPORINE; VERAPAMIL; and MIDAZOLAM. This enzyme also catalyzes the N-demethylation of ERYTHROMYCIN. CYP3A,CYP3A4,CYP3A5,Cytochrome P-450 CYP3A4,Cytochrome P-450 CYP3A5,Cytochrome P-450IIIA,Cytochrome P450 3A,Cytochrome P450 3A4,Cytochrome P450 3A5,Erythromycin N-Demethylase,Taurochenodeoxycholate 6-alpha-Monooxygenase,3A5, Cytochrome P450,6-alpha-Monooxygenase, Taurochenodeoxycholate,Cytochrome P 450 CYP3A,Cytochrome P 450 CYP3A4,Cytochrome P 450 CYP3A5,Cytochrome P 450IIIA,Erythromycin N Demethylase,N-Demethylase, Erythromycin,P-450 CYP3A, Cytochrome,P-450 CYP3A4, Cytochrome,P-450 CYP3A5, Cytochrome,P-450IIIA, Cytochrome,P450 3A, Cytochrome,P450 3A5, Cytochrome,Taurochenodeoxycholate 6 alpha Monooxygenase

Related Publications

Shin-Yeu Ong, and Hui Dai, and Kam W Leong
September 2008, Journal of biomedical materials research. Part A,
Shin-Yeu Ong, and Hui Dai, and Kam W Leong
September 2010, Biotechnology letters,
Shin-Yeu Ong, and Hui Dai, and Kam W Leong
December 2004, Hepatology (Baltimore, Md.),
Shin-Yeu Ong, and Hui Dai, and Kam W Leong
June 2015, Materials science & engineering. C, Materials for biological applications,
Shin-Yeu Ong, and Hui Dai, and Kam W Leong
May 2011, Biotechnology letters,
Shin-Yeu Ong, and Hui Dai, and Kam W Leong
May 2007, Experimental cell research,
Shin-Yeu Ong, and Hui Dai, and Kam W Leong
February 1997, Journal of cellular biochemistry,
Copied contents to your clipboard!