Airway-related vagal preganglionic neurons express multiple nicotinic acetylcholine receptor subunits. 2006

Ozra Dehkordi, and Prabha Kc, and Kannan V Balan, and Musa A Haxhiu
Department of Surgery, Howard University, Washington, DC, United States. odehkordi@howard.edu

Nicotine acting centrally increases bronchomotor tone and airway secretion, suggesting that airway-related vagal preganglionic neurons (AVPNs) within the rostral nucleus ambiguus (rNA) express nicotinic acetylcholine receptors (nAChRs). In the present study, we examined the three main functionally characterized subtypes of nAChRs in the CNS, the alpha7 homomeric and alpha4beta2 heteromeric receptors. First, we characterized the expression of these subunits at the message (mRNA) and protein levels in brain tissues taken from the rNA region, the site where AVPNs are located. In addition, double labeling fluorescent immunohistochemistry and confocal laser microscopy were used to define the presence of alpha7, alpha4, and beta2 nAChRs on AVPNs that were retrogradely labeled with cholera toxin beta subunit (CTb), injected into the upper lung lobe (n=4) or extrathoracic trachea (n=4). Our results revealed expression of all three studied subunits at mRNA and protein levels within the rNA region. Furthermore, virtually all identified AVPNs innervating intrapulmonary airways express alpha7 and alpha4 nAChR subunits. Similarly, a majority of labeled AVPNs projecting to extrathoracic trachea contain alpha7 and beta2 subunits, but less than half of them show detectable alpha4 nAChR traits. These results suggest that AVPNs express three major nAChR subunits (alpha7, alpha4, and beta2) that could assemble into functional homologous or heterologous pentameric receptors, mediating fast and sustained nicotinic effects on cholinergic outflow to the airways.

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D012143 Respiratory Physiological Phenomena Physiological processes and properties of the RESPIRATORY SYSTEM as a whole or of any of its parts. Respiratory Physiologic Processes,Respiratory Physiological Processes,Respiratory Physiology,Physiology, Respiratory,Pulmonary Physiological Phenomena,Pulmonary Physiological Phenomenon,Pulmonary Physiological Process,Pulmonary Physiological Processes,Respiratory Physiological Concepts,Respiratory Physiological Phenomenon,Respiratory Physiological Process,Concept, Respiratory Physiological,Concepts, Respiratory Physiological,Phenomena, Pulmonary Physiological,Phenomena, Respiratory Physiological,Phenomenas, Pulmonary Physiological,Phenomenas, Respiratory Physiological,Phenomenon, Pulmonary Physiological,Phenomenon, Respiratory Physiological,Phenomenons, Pulmonary Physiological,Phenomenons, Respiratory Physiological,Physiologic Processes, Respiratory,Physiological Concept, Respiratory,Physiological Concepts, Respiratory,Physiological Phenomena, Pulmonary,Physiological Phenomena, Respiratory,Physiological Phenomenas, Pulmonary,Physiological Phenomenas, Respiratory,Physiological Phenomenon, Pulmonary,Physiological Phenomenon, Respiratory,Physiological Phenomenons, Pulmonary,Physiological Phenomenons, Respiratory,Physiological Process, Pulmonary,Physiological Process, Respiratory,Physiological Processes, Pulmonary,Physiological Processes, Respiratory,Process, Pulmonary Physiological,Process, Respiratory Physiological,Processes, Pulmonary Physiological,Pulmonary Physiological Phenomenas,Pulmonary Physiological Phenomenons,Respiratory Physiological Concept,Respiratory Physiological Phenomenas,Respiratory Physiological Phenomenons
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

Ozra Dehkordi, and Prabha Kc, and Kannan V Balan, and Musa A Haxhiu
October 2001, Journal of neurophysiology,
Ozra Dehkordi, and Prabha Kc, and Kannan V Balan, and Musa A Haxhiu
May 2003, Journal of applied physiology (Bethesda, Md. : 1985),
Ozra Dehkordi, and Prabha Kc, and Kannan V Balan, and Musa A Haxhiu
March 2003, Life sciences,
Ozra Dehkordi, and Prabha Kc, and Kannan V Balan, and Musa A Haxhiu
June 2001, Annals of the New York Academy of Sciences,
Ozra Dehkordi, and Prabha Kc, and Kannan V Balan, and Musa A Haxhiu
December 2006, Respiratory physiology & neurobiology,
Ozra Dehkordi, and Prabha Kc, and Kannan V Balan, and Musa A Haxhiu
May 1998, Molecular biology and evolution,
Ozra Dehkordi, and Prabha Kc, and Kannan V Balan, and Musa A Haxhiu
January 2010, Advances in experimental medicine and biology,
Ozra Dehkordi, and Prabha Kc, and Kannan V Balan, and Musa A Haxhiu
January 1984, Biochemical Society symposium,
Ozra Dehkordi, and Prabha Kc, and Kannan V Balan, and Musa A Haxhiu
January 1999, Neuroscience,
Copied contents to your clipboard!