Effect of aminophylline on the contraction threshold of rat diaphragm fibers. 1991

A S Losavio, and B A Kotsias
Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Argentina.

We studied the effect of aminophylline (0.1-1 mM) on the contraction threshold (CT) of rat diaphragm fibers (25 degrees C). The CT was measured by direct visualization (x200) of the fiber under current-clamp conditions. The main findings are the following: 1) Aminophylline lowers the CT, in a dose-dependent manner, toward more negative values of the resting membrane potential (Vm). 2) Dibutyryl adenosine 3',5'-cyclic monophosphate (2 mM) shifts the CT, although this change is smaller than in the presence of xanthine. 3) Tetracaine (1 mM), a drug that diminishes Ca release from the sarcoplasmic reticulum, reduces the shift induced by 1 mM aminophylline; this is partially overcome by increasing aminophylline concentration to 5 mM. 4) Hyperpolarization of the fibers shifts the CT to more negative Vm. We suggest that the displacement in the CT to more negative Vm plays an important role in the potentiating effect of aminophylline. This could be the result of an enhancement of Ca release from the sarcoplasmic reticulum.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012132 Respiratory Muscles These include the muscles of the DIAPHRAGM and the INTERCOSTAL MUSCLES. Ventilatory Muscles,Respiratory Muscle,Muscle, Respiratory,Muscle, Ventilatory,Muscles, Respiratory,Muscles, Ventilatory,Ventilatory Muscle
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000628 Aminophylline A drug combination that contains THEOPHYLLINE and ethylenediamine. It is more soluble in water than theophylline but has similar pharmacologic actions. It's most common use is in bronchial asthma, but it has been investigated for several other applications. Afonilum,Aminodur,Aminophyllin,Aminophylline DF,Cardophyllin,Carine,Clonofilin,Corophyllin,Diaphyllin,Drafilyn,Duraphyllin,Eufilina,Eufilina Venosa,Euphyllin,Euphyllin Retard,Euphylline,Godafilin,Mini-Lix,Mundiphyllin,Mundiphyllin Retard,Novophyllin,Phyllocontin,Phyllotemp,Somophyllin,Tari-Dog,Theophyllamin Jenapharm,Theophyllamine,Theophyllin EDA-ratiopharm,Theophylline Ethylenediamine,Truphylline,Ethylenediamine, Theophylline,Theophyllin EDA ratiopharm,Theophyllin EDAratiopharm

Related Publications

A S Losavio, and B A Kotsias
May 1988, Journal of applied physiology (Bethesda, Md. : 1985),
A S Losavio, and B A Kotsias
June 1993, Journal of applied physiology (Bethesda, Md. : 1985),
A S Losavio, and B A Kotsias
January 1985, General pharmacology,
A S Losavio, and B A Kotsias
January 1957, Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie,
A S Losavio, and B A Kotsias
March 1990, Journal of applied physiology (Bethesda, Md. : 1985),
A S Losavio, and B A Kotsias
April 1985, Thorax,
A S Losavio, and B A Kotsias
October 1990, The European respiratory journal,
A S Losavio, and B A Kotsias
September 1989, Pediatric research,
A S Losavio, and B A Kotsias
December 1950, Nature,
A S Losavio, and B A Kotsias
June 1994, American journal of respiratory and critical care medicine,
Copied contents to your clipboard!