Regulation by dopaminergic neurotransmission of dopamine D2 mRNA and receptor levels in the striatum and nucleus accumbens of the rat. 1991

J A Angulo, and H Coirini, and M Ledoux, and M Schumacher
Rockefeller University, Laboratory of Neuroendocrinology, New York, NY 10021.

The effect of dopamine depletion or pharmacological blockade of dopamine receptors on striatal and accumbens dopamine D2 mRNA and receptor levels was assessed by in situ hybridization histochemistry and receptor autoradiography. The time course of pharmacological blockade with haloperidol demonstrates a complex mode of regulation of dopamine D2 mRNA and receptor levels. By day 8 of haloperidol treatment, D2 mRNA and receptor levels were decreased (up to 20%) in the medial and anterior aspects of the caudate-putamen (mCPU and aCPU) and the nucleus accumbens (NAc). However, by day 21 of haloperidol treatment, D2 mRNA and receptor were increased relative to vehicle-injected controls. Likewise, unilateral dopamine depletion due to 6-hydroxydopamine (6-OHDA) lesions of mesencephalic dopaminergic neurons resulted in decreased levels of D2 receptor mRNA by day 8 post-lesion in the ipsilateral mCPU, aCPU and the NAc. However, at days 14 or 21 post-lesion, there was a reversal of the effect with increases of up to 22% in all brain regions ipsilateral to the lesion. Although no decreases in receptor level were observed at day 8, significant increases in receptor level in all three brain regions were detected at days 14 and 21 post-lesion. The results demonstrate that midbrain dopaminergic innervation exerts tonic effects on the levels of dopamine D2 receptor and mRNA in the caudate-putamen and the nucleus accumbens of the rat. Changes in receptor level are frequently accompanied by comparable changes in mRNA level, indicating a mass action relationship between receptor level and receptor biosynthesis in these forebrain regions in the rat.

UI MeSH Term Description Entries
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus

Related Publications

J A Angulo, and H Coirini, and M Ledoux, and M Schumacher
October 2002, Progress in neuro-psychopharmacology & biological psychiatry,
J A Angulo, and H Coirini, and M Ledoux, and M Schumacher
June 1991, European journal of pharmacology,
J A Angulo, and H Coirini, and M Ledoux, and M Schumacher
January 1996, Acta neurobiologiae experimentalis,
J A Angulo, and H Coirini, and M Ledoux, and M Schumacher
August 1995, Psychopharmacology,
J A Angulo, and H Coirini, and M Ledoux, and M Schumacher
December 1995, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
J A Angulo, and H Coirini, and M Ledoux, and M Schumacher
December 1997, Neuroreport,
J A Angulo, and H Coirini, and M Ledoux, and M Schumacher
August 2012, The Journal of physiology,
J A Angulo, and H Coirini, and M Ledoux, and M Schumacher
December 2020, Molecular biology reports,
J A Angulo, and H Coirini, and M Ledoux, and M Schumacher
November 1991, Brain research. Developmental brain research,
Copied contents to your clipboard!