Photoaffinity labeling of the brevetoxin receptor on sodium channels in rat brain synaptosomes. 1991

V L Trainer, and W J Thomsen, and W A Catterall, and D G Baden
University of Miami, School of Medicine, Department of Biochemistry and Molecular Biology, Florida 33101.

Brevetoxin, a neurotoxin isolated from the marine dinoflagellate Ptychodiscus brevis, has been derivatized into a photoaffinity probe by carbodiimide linkage to p-azidobenzoic acid. Rosenthal analysis of a tritiated p-azidobenzoate brevetoxin derivative indicates that specific binding of the toxin occurs at two distinct and separate sites, with Kd and Bmax values of 0.21 nM and 2.12 pmol/mg of protein for the high affinity site and 50.7 nM and 91.5 pmol/mg of protein for the low affinity site, respectively. Binding of tritiated photoaffinity probe to the high affinity/low capacity site can be displaced in a competitive manner by native brevetoxin (Kd = 1.9 nM), demonstrating a specific competitive interaction with the receptor site. Rat brain synaptosomes, covalently labeled with the brevetoxin photoaffinity probe, were subjected to detergent solubilization. The covalently labeled membrane protein was estimated to have a Stokes radius of 55 +/- 3 A. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed specific labeling of a 260-kDa protein. Treatment with 2-mercaptoethanol and neuraminidase resulted in retention of brevetoxin binding to this high molecular weight protein. The affinity-purified membrane protein-brevetoxin photoaffinity probe complex was specifically recognized by a sodium channel antibody directed against the intracellular side of transmembrane segment IS6. The sodium channel alpha subunit is implicated as the specific site of brevetoxin interaction.

UI MeSH Term Description Entries
D008297 Male Males
D008387 Marine Toxins Toxic or poisonous substances elaborated by marine flora or fauna. They include also specific, characterized poisons or toxins for which there is no more specific heading, like those from poisonous FISHES. Marine Biotoxins,Phycotoxins
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling

Related Publications

V L Trainer, and W J Thomsen, and W A Catterall, and D G Baden
August 1994, The Journal of biological chemistry,
V L Trainer, and W J Thomsen, and W A Catterall, and D G Baden
December 1999, Neurotoxicology,
V L Trainer, and W J Thomsen, and W A Catterall, and D G Baden
January 1986, NIDA research monograph,
V L Trainer, and W J Thomsen, and W A Catterall, and D G Baden
August 1986, Journal of neurochemistry,
V L Trainer, and W J Thomsen, and W A Catterall, and D G Baden
August 1996, The Journal of biological chemistry,
V L Trainer, and W J Thomsen, and W A Catterall, and D G Baden
February 1986, Nihon Sanka Fujinka Gakkai zasshi,
V L Trainer, and W J Thomsen, and W A Catterall, and D G Baden
September 1985, British journal of pharmacology,
V L Trainer, and W J Thomsen, and W A Catterall, and D G Baden
July 1997, The Journal of biological chemistry,
V L Trainer, and W J Thomsen, and W A Catterall, and D G Baden
January 1996, Natural toxins,
V L Trainer, and W J Thomsen, and W A Catterall, and D G Baden
November 1986, European journal of pharmacology,
Copied contents to your clipboard!