Quantum-dot-based nanosensor for RRE IIB RNA-Rev peptide interaction assay. 2006

Chun-yang Zhang, and Lawrence W Johnson
Department of Chemistry, York College and The Graduate Center, The City University of New York, Jamaica, New York 11451, USA.

Rev is an important HIV-1 regulatory protein that binds the Rev responsive element (RRE) within the env gene of HIV-1 RNA genome; the binding of Rev to RRE is essential for the expression of the structural genes, gag-pol and env, and for HIV replication. Here we report a quantum-dot (QD)-based nanosensor that can be used in fluorescence resonance energy transfer (FRET) assays of RRE IIB RNA-Rev peptide interactions. In comparison with conventional fluorescent dye-based methods, this QD-based nanosensor offers the distinct advantages of not inhibiting the Rev-RRE interaction, high sensitivity, improved accuracy, and simultaneous FRET-related two-parameter detection. This QD-based nanosensor provides a new approach to study the effects of inhibitors upon Rev-RRE interaction, and it may have a wide applicability in the development of new drugs against HIV-1 infection.

UI MeSH Term Description Entries
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing
D045663 Quantum Dots Nanometer sized fragments of semiconductor crystalline material which emit PHOTONS. The wavelength is based on the quantum confinement size of the dot. They can be embedded in MICROBEADS for high throughput ANALYTICAL CHEMISTRY TECHNIQUES. Nanocrystals, Semiconductor,Semiconductor Nanocrystals,Semiconductor Nanoparticles,Dot, Quantum,Dots, Quantum,Nanocrystal, Semiconductor,Nanoparticle, Semiconductor,Nanoparticles, Semiconductor,Quantum Dot,Semiconductor Nanocrystal,Semiconductor Nanoparticle
D031541 Fluorescence Resonance Energy Transfer A type of FLUORESCENCE SPECTROSCOPY using two FLUORESCENT DYES with overlapping emission and absorption spectra, which is used to indicate proximity of labeled molecules. This technique is useful for studying interactions of molecules and PROTEIN FOLDING. Forster Resonance Energy Transfer
D036103 Nanotechnology The development and use of techniques to study physical phenomena and construct structures in the nanoscale size range or smaller. Nanotechnologies

Related Publications

Chun-yang Zhang, and Lawrence W Johnson
August 2003, RNA (New York, N.Y.),
Chun-yang Zhang, and Lawrence W Johnson
October 2012, Analytical chemistry,
Chun-yang Zhang, and Lawrence W Johnson
February 2000, Bioorganic & medicinal chemistry letters,
Chun-yang Zhang, and Lawrence W Johnson
November 2005, Nature materials,
Chun-yang Zhang, and Lawrence W Johnson
June 2020, Journal of molecular recognition : JMR,
Chun-yang Zhang, and Lawrence W Johnson
November 2019, Sensors (Basel, Switzerland),
Chun-yang Zhang, and Lawrence W Johnson
March 2011, Chemical communications (Cambridge, England),
Chun-yang Zhang, and Lawrence W Johnson
June 2021, Chemical communications (Cambridge, England),
Chun-yang Zhang, and Lawrence W Johnson
January 2015, Analytical chemistry,
Copied contents to your clipboard!