Pharmacological characterization of sigma binding sites in guinea pig brain membranes. 1991

E W Karbon, and S J Enna
Nova Pharmaceutical Corporation, Baltimore, MD 21224-2788.

The discovery of sigma binding sites has prompted investigation into the functional role of these sites. Binding studies have revealed that sigma sites exhibit a unique pharmacological profile, and have provided evidence favoring the existence of a multiplicity of sigma binding sites in central nervous system. However, the findings that chemicals having diverse structures and therapeutic applications are all potent sigma agents, and that sigma binding sites are present in peripheral tissues, have raised concerns about the physiological and pharmacological relevances of this site. Furthermore, an endogenous ligand for the sigma binding site has not yet been identified. Finally, there is a lack of data regarding the functional coupling of sigma binding sites, although recent studies have provided some clues as to a possible signalling mechanism (Karbon et al., 1990). Besides raising questions about the relevance of sigma sites, the paucity of information on their functional properties has made it difficult to distinguish sigma agonists from and antagonists. While haloperidol is assumed to be a sigma antagonist, the finding that prolonged administration of this neuroleptic decreases the number of sigma sites would seem to argue in favor of it being an agonist for this site. Regardless of the precise nature of the sigma binding site, studies have suggested that it may represent the site of action for a number of important drugs. For example, haloperidol, a butyrophenone antipsychotic, exhibits high affinity for sigma binding sites, and several psychotomimetics, including PCP and (+)-benzomorphans, also bind this site.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D010672 Phenytoin An anticonvulsant that is used to treat a wide variety of seizures. It is also an anti-arrhythmic and a muscle relaxant. The mechanism of therapeutic action is not clear, although several cellular actions have been described including effects on ion channels, active transport, and general membrane stabilization. The mechanism of its muscle relaxant effect appears to involve a reduction in the sensitivity of muscle spindles to stretch. Phenytoin has been proposed for several other therapeutic uses, but its use has been limited by its many adverse effects and interactions with other drugs. Diphenylhydantoin,Fenitoin,Phenhydan,5,5-Diphenylhydantoin,5,5-diphenylimidazolidine-2,4-dione,Antisacer,Difenin,Dihydan,Dilantin,Epamin,Epanutin,Hydantol,Phenytoin Sodium,Sodium Diphenylhydantoinate,Diphenylhydantoinate, Sodium
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003915 Dextromethorphan Methyl analog of DEXTRORPHAN that shows high affinity binding to several regions of the brain, including the medullary cough center. This compound is an NMDA receptor antagonist (RECEPTORS, N-METHYL-D-ASPARTATE) and acts as a non-competitive channel blocker. It is one of the widely used ANTITUSSIVES, and is also used to study the involvement of glutamate receptors in neurotoxicity. d-Methorphan,Delsym,Dextromethorphan Hydrobromide,Dextromethorphan Hydrobromide, (+-)-Isomer,Dextromethorphan Hydrobromide, Monohydrate,Dextromethorphan Hydrochloride,Dextromethorphan, (+-)-Isomer,Racemethorphan,Hydrobromide, Dextromethorphan,Hydrochloride, Dextromethorphan
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

E W Karbon, and S J Enna
November 1992, British journal of pharmacology,
E W Karbon, and S J Enna
July 1993, European journal of pharmacology,
E W Karbon, and S J Enna
December 1992, European journal of pharmacology,
E W Karbon, and S J Enna
February 1990, European journal of pharmacology,
E W Karbon, and S J Enna
November 1989, Journal of neurochemistry,
E W Karbon, and S J Enna
December 1991, The Journal of pharmacology and experimental therapeutics,
E W Karbon, and S J Enna
April 1991, European journal of pharmacology,
E W Karbon, and S J Enna
January 1994, European journal of pharmacology,
Copied contents to your clipboard!