A theoretical model of the catalytic mechanism of the Delta5-3-ketosteroid isomerase reaction. 2006

Kamlesh Sharma, and Ricardo Vázquez-Ramírez, and Carlos Kubli-Garfias
Laboratorio de Química Hormonal, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70-228, México D.F. 04510, México.

The present paper describes a theoretical approach to the catalytic reaction mechanism involved in the conversion of 5-androstene-3,17-dione to 4-androstene-3,17-dione. The model incorporates the side chains of the residues tyrosine (Tyr(14)), aspartate (Asp(38)) and aspartic acid (Asp(99)) of the enzyme Delta(5)-3-ketosteroid isomerase (KSI; EC 5.3.3.1). The reaction involves two steps: first, Asp(38) acts as a base, abstracting the 4beta-H atom (proton) from C-4 of the steroid to form a dienolate as the intermediate; next, the intermediate is reketonized by proton transfer to the 6beta-position. Each step goes through its own transition state. Functional groups of the Tyr(14) and Asp(99) side chains act as hydrogen bond donors to the O1 atom of the steroid, providing stability along the reaction coordinate. Calculations were assessed at high level Hartree-Fock theory, using the 6-31G(*) basis set and the most important physicochemical properties involved in each step of the reaction, such as total energy, hardness, and dipole moment. Likewise, to explain the mechanism of reaction, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), atomic orbital contributions to frontier orbitals formation, encoded electrostatic potentials, and atomic charges were used. Energy minima and transition state geometries were confirmed by vibrational frequency analysis. The mechanism described herein accounts for all of the properties, as well as the flow of atomic charges, explaining both catalytic mechanism and proficiency of KSI.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D000735 Androstenedione A delta-4 C19 steroid that is produced not only in the TESTIS, but also in the OVARY and the ADRENAL CORTEX. Depending on the tissue type, androstenedione can serve as a precursor to TESTOSTERONE as well as ESTRONE and ESTRADIOL. 4-Androstene-3,17-dione,delta-4-Androstenedione,4 Androstene 3,17 dione,delta 4 Androstenedione
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer
D013251 Steroid Isomerases Enzymes that catalyze the transposition of double bond(s) in a steroid molecule. EC 5.3.3. 3-Ketosteroid Isomerases,3-Oxosteroid Isomerases,3 Ketosteroid Isomerases,3 Oxosteroid Isomerases,Isomerases, 3-Ketosteroid,Isomerases, 3-Oxosteroid,Isomerases, Steroid
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine

Related Publications

Kamlesh Sharma, and Ricardo Vázquez-Ramírez, and Carlos Kubli-Garfias
January 1976, Advances in enzyme regulation,
Kamlesh Sharma, and Ricardo Vázquez-Ramírez, and Carlos Kubli-Garfias
February 1963, The Journal of biological chemistry,
Kamlesh Sharma, and Ricardo Vázquez-Ramírez, and Carlos Kubli-Garfias
December 2001, Current opinion in structural biology,
Kamlesh Sharma, and Ricardo Vázquez-Ramírez, and Carlos Kubli-Garfias
January 2003, Journal of the American Chemical Society,
Kamlesh Sharma, and Ricardo Vázquez-Ramírez, and Carlos Kubli-Garfias
May 1962, The Journal of biological chemistry,
Kamlesh Sharma, and Ricardo Vázquez-Ramírez, and Carlos Kubli-Garfias
January 1977, Methods in enzymology,
Kamlesh Sharma, and Ricardo Vázquez-Ramírez, and Carlos Kubli-Garfias
November 1997, Biochemistry,
Kamlesh Sharma, and Ricardo Vázquez-Ramírez, and Carlos Kubli-Garfias
January 1975, The Journal of biological chemistry,
Kamlesh Sharma, and Ricardo Vázquez-Ramírez, and Carlos Kubli-Garfias
November 1966, Biochemistry,
Kamlesh Sharma, and Ricardo Vázquez-Ramírez, and Carlos Kubli-Garfias
January 1975, The Journal of biological chemistry,
Copied contents to your clipboard!