Hydrogen peroxide cytotoxicity in LLC-PK1 cells: a role for iron. 1991

P D Walker, and S V Shah
Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana.

Reactive oxygen metabolites have been postulated to play an important role in both toxic and ischemic forms of acute renal tubular epithelial injury. In the present study, we examined the effect of enzymatically generated hydrogen peroxide on LLC-PK1 cells, a renal proximal tubule cell line. Exposure of LLC-PK1 cells to glucose and glucose oxidase (GO; which generates hydrogen peroxide) resulted in cytotoxicity (as measured by trypan blue exclusion) which was dose dependent and increased linearly over time to 81 +/- 5% at 180 minutes (8 +/- 1% at time 0; mean +/- SEM, N = 3 to 7). Catalase (which decomposes hydrogen peroxide) completely prevented the cytotoxicity, confirming that the toxicity was due to hydrogen peroxide production. To assess whether the hydrogen peroxide toxicity was a direct effect or mediated by other toxic oxygen metabolites, several scavengers of reactive oxygen metabolites and iron chelators were used. Superoxide dismutase (a scavenger of superoxide) had no effect. Deferoxamine (DFO), an iron chelator, provided marked protection (GO alone 45.9 +/- 4.4%; GO + DFO 13.0 +/- 2.0%; control 7.1 +/- 1.2%; N = 15 to 17, P less than 0.001). Pretreatment with DFO (1 hr, then 2 washes to remove DFO before GO addition) also markedly inhibited the cytotoxicity, suggesting that DFO's effect was due to iron chelation. Two other metal chelators (dihydroxybenzoic acid and 1,10-phenanthroline) also significantly decreased the GO-induced cytotoxicity. However, three of four hydroxyl radical scavengers used (mannitol, dimethyl sulfoxide, sodium benzoate) did not significantly decrease cell death. Only dimethylthiourea provided protection.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005949 Glucose Oxidase An enzyme of the oxidoreductase class that catalyzes the conversion of beta-D-glucose and oxygen to D-glucono-1,5-lactone and peroxide. It is a flavoprotein, highly specific for beta-D-glucose. The enzyme is produced by Penicillium notatum and other fungi and has antibacterial activity in the presence of glucose and oxygen. It is used to estimate glucose concentration in blood or urine samples through the formation of colored dyes by the hydrogen peroxide produced in the reaction. (From Enzyme Nomenclature, 1992) EC 1.1.3.4. Microcid,Oxidase, Glucose
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D006878 Hydroxides Inorganic compounds that contain the OH- group.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P D Walker, and S V Shah
October 1996, Kidney international,
P D Walker, and S V Shah
February 1997, The American journal of physiology,
P D Walker, and S V Shah
March 2003, Journal of pharmacological sciences,
P D Walker, and S V Shah
July 1993, The Journal of pharmacology and experimental therapeutics,
P D Walker, and S V Shah
October 1998, The Journal of pharmacology and experimental therapeutics,
P D Walker, and S V Shah
January 1987, The American journal of physiology,
P D Walker, and S V Shah
February 1996, Kidney international,
Copied contents to your clipboard!