Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. 2006

Yousheng Shu, and Andrea Hasenstaub, and Alvaro Duque, and Yuguo Yu, and David A McCormick
Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA.

Traditionally, neuronal operations in the cerebral cortex have been viewed as occurring through the interaction of synaptic potentials in the dendrite and soma, followed by the initiation of an action potential, typically in the axon. Propagation of this action potential to the synaptic terminals is widely believed to be the only form of rapid communication of information between the soma and axonal synapses, and hence to postsynaptic neurons. Here we show that the voltage fluctuations associated with dendrosomatic synaptic activity propagate significant distances along the axon, and that modest changes in the somatic membrane potential of the presynaptic neuron modulate the amplitude and duration of axonal action potentials and, through a Ca2+-dependent mechanism, the average amplitude of the postsynaptic potential evoked by these spikes. These results indicate that synaptic activity in the dendrite and soma controls not only the pattern of action potentials generated, but also the amplitude of the synaptic potentials that these action potentials initiate in local cortical circuits, resulting in synaptic transmission that is a mixture of triggered and graded (analogue) signals.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005289 Ferrets Semidomesticated variety of European polecat much used for hunting RODENTS and/or RABBITS and as a laboratory animal. It is in the subfamily Mustelinae, family MUSTELIDAE. Domestic Polecat,Domestic Polecats,European Polecat,European Polecats,Ferret,Mustela putorius,Mustela putorius furo,Polecat, Domestic,Polecat, European,Polecats, Domestic,Polecats, European
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

Yousheng Shu, and Andrea Hasenstaub, and Alvaro Duque, and Yuguo Yu, and David A McCormick
February 2014, Neuron,
Yousheng Shu, and Andrea Hasenstaub, and Alvaro Duque, and Yuguo Yu, and David A McCormick
July 1995, Proceedings of the National Academy of Sciences of the United States of America,
Yousheng Shu, and Andrea Hasenstaub, and Alvaro Duque, and Yuguo Yu, and David A McCormick
August 2011, Journal of neurophysiology,
Yousheng Shu, and Andrea Hasenstaub, and Alvaro Duque, and Yuguo Yu, and David A McCormick
October 2000, Brain research,
Yousheng Shu, and Andrea Hasenstaub, and Alvaro Duque, and Yuguo Yu, and David A McCormick
September 1988, Brain research bulletin,
Yousheng Shu, and Andrea Hasenstaub, and Alvaro Duque, and Yuguo Yu, and David A McCormick
January 1983, The Mount Sinai journal of medicine, New York,
Yousheng Shu, and Andrea Hasenstaub, and Alvaro Duque, and Yuguo Yu, and David A McCormick
July 2000, Journal of the autonomic nervous system,
Yousheng Shu, and Andrea Hasenstaub, and Alvaro Duque, and Yuguo Yu, and David A McCormick
January 1990, Annals of the New York Academy of Sciences,
Yousheng Shu, and Andrea Hasenstaub, and Alvaro Duque, and Yuguo Yu, and David A McCormick
February 2017, Proceedings of the National Academy of Sciences of the United States of America,
Yousheng Shu, and Andrea Hasenstaub, and Alvaro Duque, and Yuguo Yu, and David A McCormick
February 2000, Nature neuroscience,
Copied contents to your clipboard!