Design and synthesis of potent, highly selective vasopressin hypotensive agonists. 2006

Stoytcho Stoev, and Ling Ling Cheng, and Maurice Manning, and Nga Ching Wo, and Hazel H Szeto
Department of Biochemistry and Cancer Biology, Medical University of Ohio, Toledo, 43614-5804, USA.

We report here the solid-phase synthesis and vasodepressor potencies of a new lead vasopressin (VP) hypotensive peptide [1(beta-mercapto-beta,beta-pentamethylenepropionic acid)-2-0-ethyl-D-tyrosine, 3-arginine, 4-valine, 7-lysine, 9-ethylenediamine] lysine vasopressin, d(CH(2))(5)[D-Tyr(Et)(2), Arg(3), Val(4), Lys(7), Eda(9)]LVP (C) and 21 analogues of C with single modifications at positions 9 (1-13), 6 (14), 2 (16-20) and combined modifications at positions 6 and 10 (15) and 2 and 10 (21). Peptides 1-13 have the following replacements for the Eda residue at position 9 in C: (1) Gly-NH(2); (2) Gly-NH-CH(3); (3) Ala-NH(2); (4) Ala-NH-CH(3), (5) Val-NH(2); (6) Cha-NH(2); (7) Thr-NH(2); (8) Phe-NH(2); (9) Tyr-NH(2); (10) Orn-NH(2); (11) Lys-NH(2); (12) D-Lys-NH(2); (13) Arg-NH(2). Peptide 14 has the Cys residue at position 6 replaced by Pen. Peptide 15 is the retro-Tyr(10) analogue of peptide 14. Peptides 16-20 have the D-Tyr(Et) residue at position 2 in C replaced by the following substituents: D-Trp (16); D-2-Nal (17); D-Tyr(Bu(t))(18); D-Tyr(Pr(n)) (19); D-Tyr(Pr(i)) (20). Peptide 21 is the retro-Tyr(10) analogue of peptide 20. C and peptides 1-21 were evaluated for agonistic and antagonistic activities in in vivo vasopressor (V(1a)-receptor), antidiuretic (V(2)-receptor), and in in vitro (no Mg(2+)) oxytocic (OT-receptor) assays in the rat, and, like the original hypotensive peptide, d(CH(2))(5)[D-Tyr(Et)(2), Arg(3), Val(4)]AVP (A) (Manning et al., J. Peptide Science 1999, 5:472-490), were found to exhibit no or negligible activities in these assays. Vasodepressor potencies were determined in anesthetized male rats with baseline mean arterial blood pressure (BP) maintained at 100-120 mmHg. The effective dose (ED), in microg/100 g i.v., the dose required to produce a vasodepressor response of 5 cm(2) area under the vasodepressor response curve (AUC) during the 5-min period following the injection of the test peptide, was determined. The EDs measure the vasodepressor potencies of the hypotensive peptides C and 1-21 relative to that of A (ED = 4.66 microg/100 g) and to each other. The following ED values in microg/100 g were obtained for C and for peptides 1-21; C 0.53; (1) 2.41; (2) 1.13; (3) 1.62; (4) 0.80; (5) 1.83; (6) 1.56; (7) 2.12, (8) 2.58; (9) 1.40; (10) 0.88; (11) 0.90; (12) 0.85; (13) 0.68; (14) 0.99; (15) 1.05; (16) 0.66; (17) 0.54; (18) 0.33; (19) 0.18; (20) 0.15; (21) 0.14. All of the hypotensive peptides reported here are more potent than A. Peptides 20 and 21 exhibit a striking 30-fold enhancement in vasodepressor potencies relative to A. With a vasodepressor ED = 0.14, peptide 21 is the most potent VP vasodepressor agonist reported to date. Because it contains a retro-Tyr(10) residue, it is a promising new radioiodinatable ligand for the putative VP vasodilating receptor. Some of these new hypotensive peptides may be of value as research tools for studies on the complex cardiovascular actions of VP and may lead to the development of a new class of antihypertensive agents.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014665 Vasodilator Agents Drugs used to cause dilation of the blood vessels. Vasoactive Antagonists,Vasodilator,Vasodilator Agent,Vasodilator Drug,Vasorelaxant,Vasodilator Drugs,Vasodilators,Vasorelaxants,Agent, Vasodilator,Agents, Vasodilator,Antagonists, Vasoactive,Drug, Vasodilator,Drugs, Vasodilator
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs

Related Publications

Stoytcho Stoev, and Ling Ling Cheng, and Maurice Manning, and Nga Ching Wo, and Hazel H Szeto
August 2007, Bioorganic & medicinal chemistry letters,
Stoytcho Stoev, and Ling Ling Cheng, and Maurice Manning, and Nga Ching Wo, and Hazel H Szeto
March 2006, Bioorganic & medicinal chemistry letters,
Stoytcho Stoev, and Ling Ling Cheng, and Maurice Manning, and Nga Ching Wo, and Hazel H Szeto
October 2010, ChemMedChem,
Stoytcho Stoev, and Ling Ling Cheng, and Maurice Manning, and Nga Ching Wo, and Hazel H Szeto
November 1994, Journal of medicinal chemistry,
Stoytcho Stoev, and Ling Ling Cheng, and Maurice Manning, and Nga Ching Wo, and Hazel H Szeto
July 1990, Journal of medicinal chemistry,
Stoytcho Stoev, and Ling Ling Cheng, and Maurice Manning, and Nga Ching Wo, and Hazel H Szeto
August 2013, ChemMedChem,
Stoytcho Stoev, and Ling Ling Cheng, and Maurice Manning, and Nga Ching Wo, and Hazel H Szeto
February 2016, Bioorganic & medicinal chemistry,
Stoytcho Stoev, and Ling Ling Cheng, and Maurice Manning, and Nga Ching Wo, and Hazel H Szeto
May 2018, Molecular diversity,
Stoytcho Stoev, and Ling Ling Cheng, and Maurice Manning, and Nga Ching Wo, and Hazel H Szeto
January 2021, ACS chemical neuroscience,
Stoytcho Stoev, and Ling Ling Cheng, and Maurice Manning, and Nga Ching Wo, and Hazel H Szeto
June 2015, Archiv der Pharmazie,
Copied contents to your clipboard!