Temporal, differential and regional expression of mRNA for basic fibroblast growth factor in the developing and adult rat brain. 1991

P P Powell, and S P Finklestein, and C A Dionne, and M Jaye, and M Klagsbrun
Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA 02115.

The expression of basic fibroblast growth factor (bFGF) mRNA and bFGF receptor mRNA was investigated in developing rat brain. In embryonic rat brain days 13-21 (E13-E21), an abundant 1.8 kb bFGF mRNA was detected. Expression of 1.8 kb bFGF mRNA was the highest at E17 to E19 and was relatively undetectable 20 days after birth. However, very little mitogenic activity was associated with prenatal brain. On the other hand, multiple bFGF mRNA species of 6.0, 3.7, 2.5, 1.8, 1.6, 1.4 and 1.0 kb were detected in total adult rat brain and a significant amount of mitogenic activity was present. Differential and spatial bFGF mRNA expression was found in different parts of developing rat brain. Embryonic hypothalamus was found to contain the 1.8 kb bFGF mRNA while the 6.0 kb bFGF mRNA transcript was predominant in adult hypothalamus. Adult pituitary and cortex transcribed the lower molecular weight mRNAs but not the 6.0 kb mRNA. Expression of high-affinity bFGF receptor (flg) mRNA was found to be temporally regulated. flg 4.3 kb mRNA expression was high in embryonic rat brain (E13-E19). There appears to be coordinate expression between the 1.8 kb bFGF mRNA and flg. These results suggest that the expression of basic FGF mRNA is complex since it is both temporally and differentially regulated with different species being expressed at different times in development.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001681 Biological Assay A method of measuring the effects of a biologically active substance using an intermediate in vivo or in vitro tissue or cell model under controlled conditions. It includes virulence studies in animal fetuses in utero, mouse convulsion bioassay of insulin, quantitation of tumor-initiator systems in mouse skin, calculation of potentiating effects of a hormonal factor in an isolated strip of contracting stomach muscle, etc. Bioassay,Assay, Biological,Assays, Biological,Biologic Assay,Biologic Assays,Assay, Biologic,Assays, Biologic,Bioassays,Biological Assays
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings

Related Publications

P P Powell, and S P Finklestein, and C A Dionne, and M Jaye, and M Klagsbrun
August 2006, Neuroscience,
P P Powell, and S P Finklestein, and C A Dionne, and M Jaye, and M Klagsbrun
March 1991, Neuron,
P P Powell, and S P Finklestein, and C A Dionne, and M Jaye, and M Klagsbrun
May 1994, Experimental neurology,
P P Powell, and S P Finklestein, and C A Dionne, and M Jaye, and M Klagsbrun
October 1996, Current eye research,
P P Powell, and S P Finklestein, and C A Dionne, and M Jaye, and M Klagsbrun
January 1998, Brain research. Molecular brain research,
P P Powell, and S P Finklestein, and C A Dionne, and M Jaye, and M Klagsbrun
September 1990, Journal of neuroscience research,
P P Powell, and S P Finklestein, and C A Dionne, and M Jaye, and M Klagsbrun
August 1994, Neuroscience,
P P Powell, and S P Finklestein, and C A Dionne, and M Jaye, and M Klagsbrun
November 1994, Brain research. Molecular brain research,
P P Powell, and S P Finklestein, and C A Dionne, and M Jaye, and M Klagsbrun
September 1991, Brain research. Developmental brain research,
P P Powell, and S P Finklestein, and C A Dionne, and M Jaye, and M Klagsbrun
January 1990, Histochemistry,
Copied contents to your clipboard!