Phospholipase Cgamma/diacylglycerol-dependent activation of beta2-chimaerin restricts EGF-induced Rac signaling. 2006

HongBin Wang, and Chengfeng Yang, and Federico Coluccio Leskow, and Jing Sun, and Bertram Canagarajah, and James H Hurley, and Marcelo G Kazanietz
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA.

Although receptor-mediated regulation of small G-proteins and the cytoskeleton is intensively studied, the mechanisms for attenuation of these signals are poorly understood. In this study, we have identified the Rac-GAP beta2-chimaerin as an effector of the epidermal growth factor receptor (EGFR) via coupling to phospholipase Cgamma (PLCgamma) and generation of the lipid second messenger diacylglycerol (DAG). EGF redistributes beta2-chimaerin to promote its association with the small GTPase Rac1 at the plasma membrane, as determined by FRET. This relocalization and association with Rac1 were impaired by disruption of the beta2-chimaerin C1 domain as well as by PLCgamma1 RNAi, thus defining beta2-chimaerin as a novel DAG effector. On the other hand, GAP-deficient beta2-chimaerin mutants show enhanced translocation and sustained Rac1 association in the FRET assays. Remarkably, RNAi depletion of beta2-chimaerin significantly extended the duration of Rac activation by EGF, suggesting that beta2-chimaerin serves as a mechanism that self-limits Rac activity in response to EGFR activation. Our results represent the first direct evidence of divergence in DAG signaling downstream of a tyrosine-kinase receptor via a PKC-independent mechanism.

UI MeSH Term Description Entries
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D004075 Diglycerides Glycerides composed of two fatty acids esterified to the trihydric alcohol GLYCEROL. There are two possible forms that exist: 1,2-diacylglycerols and 1,3-diacylglycerols. Diacylglycerol,Diacylglycerols
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

HongBin Wang, and Chengfeng Yang, and Federico Coluccio Leskow, and Jing Sun, and Bertram Canagarajah, and James H Hurley, and Marcelo G Kazanietz
October 2004, Cell,
HongBin Wang, and Chengfeng Yang, and Federico Coluccio Leskow, and Jing Sun, and Bertram Canagarajah, and James H Hurley, and Marcelo G Kazanietz
May 2010, The Journal of biological chemistry,
HongBin Wang, and Chengfeng Yang, and Federico Coluccio Leskow, and Jing Sun, and Bertram Canagarajah, and James H Hurley, and Marcelo G Kazanietz
January 2011, The Journal of biological chemistry,
HongBin Wang, and Chengfeng Yang, and Federico Coluccio Leskow, and Jing Sun, and Bertram Canagarajah, and James H Hurley, and Marcelo G Kazanietz
February 2007, FEBS letters,
HongBin Wang, and Chengfeng Yang, and Federico Coluccio Leskow, and Jing Sun, and Bertram Canagarajah, and James H Hurley, and Marcelo G Kazanietz
January 2013, Nature communications,
HongBin Wang, and Chengfeng Yang, and Federico Coluccio Leskow, and Jing Sun, and Bertram Canagarajah, and James H Hurley, and Marcelo G Kazanietz
October 2001, Journal of cellular physiology,
HongBin Wang, and Chengfeng Yang, and Federico Coluccio Leskow, and Jing Sun, and Bertram Canagarajah, and James H Hurley, and Marcelo G Kazanietz
January 2006, Journal of cell science,
HongBin Wang, and Chengfeng Yang, and Federico Coluccio Leskow, and Jing Sun, and Bertram Canagarajah, and James H Hurley, and Marcelo G Kazanietz
December 2008, The Journal of biological chemistry,
HongBin Wang, and Chengfeng Yang, and Federico Coluccio Leskow, and Jing Sun, and Bertram Canagarajah, and James H Hurley, and Marcelo G Kazanietz
October 2007, Cell cycle (Georgetown, Tex.),
HongBin Wang, and Chengfeng Yang, and Federico Coluccio Leskow, and Jing Sun, and Bertram Canagarajah, and James H Hurley, and Marcelo G Kazanietz
April 2009, The Journal of biological chemistry,
Copied contents to your clipboard!