ATP-sensitive Na(+)-H+ antiport in type II alveolar epithelial cells. 1991

S E Brown, and T A Heming, and C R Benedict, and A Bidani
Pulmonary Research Laboratories, University of Texas Medical Branch, Galveston 77550.

Type II alveolar epithelial cells in suspension have been previously shown to possess a Na(+)-H+ antiporter that modulates recovery from an intracellular acid load in the nominal absence of HCO-3 [E. Nord, S. Brown, and E. Crandall. Am. J. Physiol. 252 (Cell Physiol. 21): C490-C498, 1987]. Such a Na(+)-dependent mechanism has also been demonstrated in cultured type II cell monolayers (K. Sano et al. Biochim. Biophys. Acta 939: 449-458, 1988). It has recently been suggested that cultured type II cells possess a H(+)-ATPase that contributes to recovery from an intracellular acid load [R. Lubman, S. Danto, and E. Crandall. Am. J. Physiol. 257 (Lung Cell. Mol. Physiol. 1): L438-L445, 1989]. The present study was undertaken to investigate and characterize the mechanisms by which cultured type II cells recover from an intracellular acid load in the nominal absence of HCO-3. Cultured type II cell monolayers were loaded with the pH-sensitive probe 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein, and the characteristics of recovery from an imposed intracellular acid load were studied. Recovery of intracellular pH (pHi) was found to be strictly Na(+)-dependent and inhibited greater than or equal to 95% by 1 mM amiloride. Initial rate of recovery was highly sensitive to pHi, with recovery rates varying inversely with increasing pHi. An acidic extracellular pH (6.5) abolished pHi recovery. Treatment of type II cells with either the sulfhydryl reagent N-ethylmaleimide, a nonspecific sulfhydryl reagent, or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, a specific vacuolar H(+)-ATPase inhibitor at the concentration tested, resulted in marginal but not statistically significant decrements in pHi recovery. Intracellular ATP depletion, using KCN or replacement of glucose by a nonmetabolizable glucose analogue, reduced pHi recovery by 70-75% relative to control values. Sensitivity to ATP was apparent even under conditions that preserved the transmembrane Na+ gradient. Taken together, these data are most consistent with a single mechanism for pHi recovery in the absence of HCO3-. We interpret this mechanism to be an ATP-sensitive Na(+)-H+ antiporter that acts to reestablish pHi in type II alveolar epithelial cells.

UI MeSH Term Description Entries
D008297 Male Males
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

S E Brown, and T A Heming, and C R Benedict, and A Bidani
May 1987, The American journal of physiology,
S E Brown, and T A Heming, and C R Benedict, and A Bidani
February 1994, The American journal of physiology,
S E Brown, and T A Heming, and C R Benedict, and A Bidani
May 1994, The Journal of general physiology,
S E Brown, and T A Heming, and C R Benedict, and A Bidani
May 1983, The Journal of biological chemistry,
S E Brown, and T A Heming, and C R Benedict, and A Bidani
January 2004, Proceedings of the American Thoracic Society,
S E Brown, and T A Heming, and C R Benedict, and A Bidani
November 1994, The Journal of experimental biology,
S E Brown, and T A Heming, and C R Benedict, and A Bidani
October 1990, Gastroenterology,
S E Brown, and T A Heming, and C R Benedict, and A Bidani
February 1986, The American journal of physiology,
S E Brown, and T A Heming, and C R Benedict, and A Bidani
December 1986, Cancer biochemistry biophysics,
S E Brown, and T A Heming, and C R Benedict, and A Bidani
October 1987, General physiology and biophysics,
Copied contents to your clipboard!