Conjugal transfer of Tn916, Tn916 delta E, and pAM beta 1 from Enterococcus faecalis to Butyrivibrio fibrisolvens strains. 1991

R B Hespell, and T R Whitehead
National Center for Agricultural Utilization Research, U.S. Department of Agriculture, Peoria, Illinois 61604.

Anaerobic filter matings of Butyrivibrio fibrisolvens H17c, CF3, D1, or GS113, representing different DNA relatedness groups, were done with Enterococcus faecalis CG110, which contains chromosomally inserted Tn916. Tetracycline-resistant transconjugants were obtained with each mating pair at average frequencies of 4.4 x 10(-6) (per recipient) and 5.2 x 10(-6) (per donor). The transfer frequencies of Tn916 into B. fibrisolvens varied 5- to 10-fold with mating time, strain, and growth stage. By using Southern hybridization with pAM120 as the probe, Tn916 was shown to insert at one or more separate chromosomal sites for each strain of B. fibrisolvens. Retransfer of Tn916 from B. fibrisolvens H17c or CF3 to E. faecalis OG1-X or JH 2-2 or to B. fibrisolvens D1 or GS113 could not be shown. Matings of E. faecalis RH110, which contains chromosomally inserted Tn916 delta E, with B. fibrisolvens 49, H17c, D1, CF3, GS113, or VV-1 resulted in erythromycin-resistant transconjugants at average frequencies of 5.3 x 10(-7) (per recipient) and 2.5 x 10(-7) (per donor). Tn916 delta E was shown by Southern hybridization with pAM120 to insert at one or more sites in the chromosome of each strain. B. fibrisolvens H17c was anaerobically filter mated with E. faecalis JH 2-SS, which contains pAM beta 1. Erythromycin-resistant transconjugants were obtained at frequencies of 2 x 10(-5) (per recipient) and 6 x 10(-5) (per donor). The presence of pAM beta 1 in these transconjugants could not be shown by agarose gel electrophoresis of plasmid minilysates but could be shown by Southern hybridization analysis.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003227 Conjugation, Genetic A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes. Bacterial Conjugation,Conjugation, Bacterial,Genetic Conjugation
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D001438 Bacteroidaceae A family of gram-negative bacteria found primarily in the intestinal tracts and mucous membranes of warm-blooded animals. Its organisms are sometimes pathogenic.
D013293 Enterococcus faecalis A species of gram-positive, coccoid bacteria commonly isolated from clinical specimens and the human intestinal tract. Most strains are nonhemolytic. Streptococcus Group D,Streptococcus faecalis

Related Publications

R B Hespell, and T R Whitehead
November 1987, Applied and environmental microbiology,
R B Hespell, and T R Whitehead
November 1988, The Journal of applied bacteriology,
R B Hespell, and T R Whitehead
August 1987, Journal of bacteriology,
R B Hespell, and T R Whitehead
January 1996, FEMS microbiology letters,
R B Hespell, and T R Whitehead
September 1986, Applied and environmental microbiology,
R B Hespell, and T R Whitehead
December 2005, Antimicrobial agents and chemotherapy,
R B Hespell, and T R Whitehead
November 1991, Journal of bacteriology,
Copied contents to your clipboard!