Identification of a major histocompatibility complex class I-restricted T-cell epitope in the tumour-associated antigen, 5T4. 2006

Irina Redchenko, and Richard Harrop, and Matthew G Ryan, and Robert E Hawkins, and Miles W Carroll
Oxford BioMedica (UK) Ltd, Medawar Centre, Oxford Science Park, Oxford, UK. i.redchenko@oxfordbiomedica.co.uk

5T4 is a surface glycoprotein expressed on placental trophoblasts and also on a wide range of human carcinomas. Its highly restricted expression on normal tissues and broad distribution on many carcinomas make 5T4 a promising target for cancer immunotherapy. In the current study, we set out to investigate whether a 5T4-specific cytotoxic T lymphocyte (CTL) repertoire exists in healthy individuals. CD4-depleted peripheral blood mononuclear cells (PBMCs) from blood donors were screened using an ex vivo interferon-gamma (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay. A panel of overlapping peptides, spanning the full length of the 5T4 protein, was used as a source of antigen. In the process of screening, one out of 30 blood donors demonstrated a positive ex vivo IFN-gamma ELISPOT response to a single 5T4 peptide. A polyclonal T-cell line was derived from this donor by culturing PBMCs with autologous peptide-pulsed dendritic cells (DCs). The resulting polyclonal T-cell line and clones were tested in a 51Cr-release assay and by ELISPOT and were shown to be peptide specific. Furthermore, antigen-presenting cells (APCs), infected with a viral vector expressing 5T4, were able to stimulate IFN-gamma production by the peptide-specific T-cell clones. A minimal CD8 epitope, PLADLSPFA, has been identified and found to be restricted through human leucocyte antigen (HLA) Cw7. Subsequently, we have demonstrated that HLA-Cw7-positive colorectal cancer patients vaccinated with a recombinant vaccinia viral vector encoding 5T4 (TroVax) are capable of mounting a strong IFN-gamma ELISPOT response to this novel CTL epitope. These findings have potential application in cancer immunotherapy in terms of subunit vaccine design and the monitoring of immune responses induced in patients by 5T4-based therapies.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D005805 Genes, MHC Class I Genetic loci in the vertebrate major histocompatibility complex which encode polymorphic characteristics not related to immune responsiveness or complement activity, e.g., B loci (chicken), DLA (dog), GPLA (guinea pig), H-2 (mouse), RT-1 (rat), HLA-A, -B, and -C class I genes of man. Class I Genes,Genes, Class I,Genes, H-2 Class I,Genes, HLA Class I,MHC Class I Genes,H-2 Class I Genes,HLA Class I Genes,Class I Gene,Gene, Class I,Genes, H 2 Class I,H 2 Class I Genes
D006650 Histocompatibility Testing Identification of the major histocompatibility antigens of transplant DONORS and potential recipients, usually by serological tests. Donor and recipient pairs should be of identical ABO blood group, and in addition should be matched as closely as possible for HISTOCOMPATIBILITY ANTIGENS in order to minimize the likelihood of allograft rejection. (King, Dictionary of Genetics, 4th ed) Crossmatching, Tissue,HLA Typing,Tissue Typing,Crossmatchings, Tissue,HLA Typings,Histocompatibility Testings,Testing, Histocompatibility,Testings, Histocompatibility,Tissue Crossmatching,Tissue Crossmatchings,Tissue Typings,Typing, HLA,Typing, Tissue,Typings, HLA,Typings, Tissue
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D015179 Colorectal Neoplasms Tumors or cancer of the COLON or the RECTUM or both. Risk factors for colorectal cancer include chronic ULCERATIVE COLITIS; FAMILIAL POLYPOSIS COLI; exposure to ASBESTOS; and irradiation of the CERVIX UTERI. Colorectal Cancer,Colorectal Carcinoma,Colorectal Tumors,Neoplasms, Colorectal,Cancer, Colorectal,Cancers, Colorectal,Carcinoma, Colorectal,Carcinomas, Colorectal,Colorectal Cancers,Colorectal Carcinomas,Colorectal Neoplasm,Colorectal Tumor,Neoplasm, Colorectal,Tumor, Colorectal,Tumors, Colorectal

Related Publications

Irina Redchenko, and Richard Harrop, and Matthew G Ryan, and Robert E Hawkins, and Miles W Carroll
July 2001, The Journal of biological chemistry,
Irina Redchenko, and Richard Harrop, and Matthew G Ryan, and Robert E Hawkins, and Miles W Carroll
March 1992, European journal of immunology,
Irina Redchenko, and Richard Harrop, and Matthew G Ryan, and Robert E Hawkins, and Miles W Carroll
July 2002, Tissue antigens,
Irina Redchenko, and Richard Harrop, and Matthew G Ryan, and Robert E Hawkins, and Miles W Carroll
May 2004, Immunology,
Irina Redchenko, and Richard Harrop, and Matthew G Ryan, and Robert E Hawkins, and Miles W Carroll
June 1997, Journal of virology,
Irina Redchenko, and Richard Harrop, and Matthew G Ryan, and Robert E Hawkins, and Miles W Carroll
January 1983, Immunological reviews,
Irina Redchenko, and Richard Harrop, and Matthew G Ryan, and Robert E Hawkins, and Miles W Carroll
January 1992, Advances in immunology,
Irina Redchenko, and Richard Harrop, and Matthew G Ryan, and Robert E Hawkins, and Miles W Carroll
January 1999, Annual review of immunology,
Irina Redchenko, and Richard Harrop, and Matthew G Ryan, and Robert E Hawkins, and Miles W Carroll
July 1995, Annals of the New York Academy of Sciences,
Irina Redchenko, and Richard Harrop, and Matthew G Ryan, and Robert E Hawkins, and Miles W Carroll
January 1995, Journal of drug targeting,
Copied contents to your clipboard!