Decavanadate displaces inositol 1,4,5-trisphosphate (IP3) from its receptor and inhibits IP3 induced Ca2+ release in permeabilized pancreatic acinar cells. 1991

K J Föhr, and Y Wahl, and R Engling, and T P Kemmer, and M Gratzl
Abteilung Anatomie und Zellbiologie, Universität Ulm, Germany.

Inositol 1,4,5-trisphosphate (IP3) induced Ca2+ release in digitonin permeabilized rat pancreatic acinar cells is specifically inhibited by decavanadate. The Ca2+ release induced with 0.18 microM IP3 is half maximally inhibited with approximately 5 microM decavanadate. Complete inhibition is achieved with around 20 microM decavanadate. Removal of decavanadate from the permeabilized cells fully restores sensitivity towards IP3, indicating the reversibility of the inhibition. Oligovanadate, which inhibits ATP dependent Ca2+ uptake into intracellular stores, does not influence IP3 induced Ca2+ release. In order to reveal the mechanism underlying the effects of the different vanadate species, binding of IP3 to the same cellular preparations was investigated. We found that binding of IP3 to a high affinity receptor site (Kd approx. 1.2 nM) could be abolished by decavanadate but not by oligovanadate. With 0.5 microM decavanadate, IP3 binding was half maximally inhibited. A similar potency of decavanadate was also found with adrenal cortex microsomes which bind IP3 with the same affinity (Kd approx. 1.4 nM) as permeabilized pancreatic acinar cells. Labelled IP3 was displaced from these subcellular membranes with similar kinetics by unlabelled IP3 and decavanadate. The data suggest that the inhibitory action of decavanadate on IP3 induced Ca2+ release is a consequence of its effect on binding of IP3 to its receptor.

UI MeSH Term Description Entries
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004072 Digitonin A glycoside obtained from Digitalis purpurea; the aglycone is digitogenin which is bound to five sugars. Digitonin solubilizes lipids, especially in membranes and is used as a tool in cellular biochemistry, and reagent for precipitating cholesterol. It has no cardiac effects. Digitin
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014638 Vanadates Oxyvanadium ions in various states of oxidation. They act primarily as ion transport inhibitors due to their inhibition of Na(+)-, K(+)-, and Ca(+)-ATPase transport systems. They also have insulin-like action, positive inotropic action on cardiac ventricular muscle, and other metabolic effects. Decavanadate,Metavanadate,Orthovanadate,Oxyvanadium,Vanadyl,Monovanadate,Sodium Vanadate,Vanadate,Vanadate, Sodium
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015544 Inositol 1,4,5-Trisphosphate Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. 1,4,5-InsP3,Inositol 1,4,5-Triphosphate,Myo-Inositol 1,4,5-Trisphosphate,1,4,5-IP3,Myoinositol 1,4,5-Triphosphate

Related Publications

K J Föhr, and Y Wahl, and R Engling, and T P Kemmer, and M Gratzl
February 1990, The Biochemical journal,
K J Föhr, and Y Wahl, and R Engling, and T P Kemmer, and M Gratzl
February 1986, Biochemical and biophysical research communications,
K J Föhr, and Y Wahl, and R Engling, and T P Kemmer, and M Gratzl
January 1991, Cell calcium,
K J Föhr, and Y Wahl, and R Engling, and T P Kemmer, and M Gratzl
June 1989, The Journal of biological chemistry,
K J Föhr, and Y Wahl, and R Engling, and T P Kemmer, and M Gratzl
February 1988, FEBS letters,
K J Föhr, and Y Wahl, and R Engling, and T P Kemmer, and M Gratzl
April 2003, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
K J Föhr, and Y Wahl, and R Engling, and T P Kemmer, and M Gratzl
January 1983, Nature,
K J Föhr, and Y Wahl, and R Engling, and T P Kemmer, and M Gratzl
February 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!