Pro-opiomelanocortin colocalizes with corticotropin- releasing factor in axon terminals of the noradrenergic nucleus locus coeruleus. 2006

Beverly A S Reyes, and Julia D Glaser, and Ronaldo Magtoto, and Elisabeth J Van Bockstaele
Department of Neurosurgery, Further Institute for Neurosciences, Thomas Jefferson University, 900 Walnut Street, Suite 400, Philadelphia, PA 19107, USA. bsr103@jefferson.edu

We previously demonstrated that the opioid peptide enkephalin and corticotropin-releasing factor (CRF) are occasionally colocalized in individual axon terminals but more frequently converge on common dendrites in the locus coeruleus (LC). To further examine potential opioid cotransmitters in CRF afferents we investigated the distribution of pro-opiomelanocortin (POMC), the precursor that yields the potent bioactive peptide beta-endorphin, with respect to CRF immunoreactivity using immunofluorescence and immunoelectron microscopic analyses of the LC. Coronal sections were collected through the dorsal pontine tegmentum of rat brain and processed for immunocytochemical detection of POMC and CRF or tyrosine hydroxylase (TH). POMC-immunoreactive processes exhibited a distinct distribution within the LC as compared to the enkephalin family of opioid peptides. Specifically, POMC fibers were enriched in the ventromedial aspect of the LC with fewer fibers present dorsolaterally. Immunofluorescence microscopy showed frequent coexistence of POMC and CRF in varicose processes that overlapped TH-containing somatodendritic processes in the LC. Ultrastructural analysis showed POMC immunoreactivity in unmyelinated axons and axon terminals. Axon terminals containing POMC were filled with numerous large dense-core vesicles. In sections processed for POMC and TH, approximately 29% of POMC-containing axon terminals (n = 405) targeted dendrites that exhibited immunogold-silver labeling for TH. In contrast, sections processed for POMC and CRF showed that 27% of POMC-labeled axon terminals (n = 657) also exhibited CRF immunoreactivity. Taken together, these data indicate that a subset of CRF afferents targeting the LC contain POMC and may be positioned to dually impact LC activity.

UI MeSH Term Description Entries
D008125 Locus Coeruleus Bluish-colored region in the superior angle of the FOURTH VENTRICLE floor, corresponding to melanin-like pigmented nerve cells which lie lateral to the PERIAQUEDUCTAL GRAY. Locus Caeruleus Complex,Locus Caeruleus,Locus Ceruleus,Locus Ceruleus Complex,Locus Coeruleus Complex,Nucleus Pigmentosus Pontis,Caeruleus Complex, Locus,Complex, Locus Caeruleus,Complex, Locus Ceruleus,Complex, Locus Coeruleus,Pontis, Nucleus Pigmentosus
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011333 Pro-Opiomelanocortin A 30-kDa protein synthesized primarily in the ANTERIOR PITUITARY GLAND and the HYPOTHALAMUS. It is also found in the skin and other peripheral tissues. Depending on species and tissues, POMC is cleaved by PROHORMONE CONVERTASES yielding various active peptides including ACTH; BETA-LIPOTROPIN; ENDORPHINS; MELANOCYTE-STIMULATING HORMONES; and others (GAMMA-LPH; CORTICOTROPIN-LIKE INTERMEDIATE LOBE PEPTIDE; N-terminal peptide of POMC or NPP). POMC,Pro-Opiocortin,ACTH-Endorphin Precursor,ACTH-beta-Lipotropin Precursor,Corticotropin-beta-Lipotropin Precursor,Endorphin-ACTH Precursor,Opiocortin,Pre-POMC,Pre-pro-opiocortin,Preproopiomelanocortin,Pro-ACTH-Endorphin,Pro-Opio-Melanocortin,Proopiocortin,Proopiomelanocortin,ACTH Endorphin Precursor,ACTH beta Lipotropin Precursor,Corticotropin beta Lipotropin Precursor,Endorphin ACTH Precursor,Pre POMC,Pre pro opiocortin,Pro ACTH Endorphin,Pro Opio Melanocortin,Pro Opiocortin,Pro Opiomelanocortin
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase
D016253 Microscopy, Immunoelectron Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays. Immunoelectron Microscopy,Microscopy, Immuno-Electron,Immuno-Electron Microscopies,Immuno-Electron Microscopy,Immunoelectron Microscopies,Microscopies, Immuno-Electron,Microscopies, Immunoelectron,Microscopy, Immuno Electron
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Beverly A S Reyes, and Julia D Glaser, and Ronaldo Magtoto, and Elisabeth J Van Bockstaele
January 1991, Psychopharmacology bulletin,
Beverly A S Reyes, and Julia D Glaser, and Ronaldo Magtoto, and Elisabeth J Van Bockstaele
July 1983, Brain research,
Beverly A S Reyes, and Julia D Glaser, and Ronaldo Magtoto, and Elisabeth J Van Bockstaele
March 2017, The European journal of neuroscience,
Beverly A S Reyes, and Julia D Glaser, and Ronaldo Magtoto, and Elisabeth J Van Bockstaele
January 1989, Psychopharmacology bulletin,
Beverly A S Reyes, and Julia D Glaser, and Ronaldo Magtoto, and Elisabeth J Van Bockstaele
January 2012, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Beverly A S Reyes, and Julia D Glaser, and Ronaldo Magtoto, and Elisabeth J Van Bockstaele
January 2001, Neuroscience,
Beverly A S Reyes, and Julia D Glaser, and Ronaldo Magtoto, and Elisabeth J Van Bockstaele
May 1996, Neuroendocrinology,
Beverly A S Reyes, and Julia D Glaser, and Ronaldo Magtoto, and Elisabeth J Van Bockstaele
May 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology,
Beverly A S Reyes, and Julia D Glaser, and Ronaldo Magtoto, and Elisabeth J Van Bockstaele
June 2006, The European journal of neuroscience,
Beverly A S Reyes, and Julia D Glaser, and Ronaldo Magtoto, and Elisabeth J Van Bockstaele
January 1992, Psychoneuroendocrinology,
Copied contents to your clipboard!