Arterial blood pressure monitoring in overweight critically ill patients: invasive or noninvasive? 2006

Ali Araghi, and Joseph J Bander, and Jorge A Guzman
Division of Pulmonary, Critical Care, and Sleep Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA.

BACKGROUND Blood pressure measurements frequently guide management in critical care. Direct readings, commonly from a major artery, are considered to be the gold standard. Because arterial cannulation is associated with risks, alternative noninvasive blood pressure (NIBP) measurements are routinely used. However, the accuracy of NIBP determinations in overweight patients in the outpatient setting is variable, and little is known about critically ill patients. This prospective, observational study was performed to compare direct intra-arterial blood pressure (IABP) with NIBP measurements obtained using auscultatory and oscillometric methods in overweight patients admitted to our medical intensive care unit. METHODS Adult critically ill patients with a body mass index (BMI) of 25 kg/m2 or greater and a functional arterial line (assessed using the rapid flush test) were enrolled in the study. IABP measurements were compared with those obtained noninvasively. A calibrated aneroid manometer (auscultatory technique) with arm cuffs compatible with arm sizes and a NIBP monitor (oscillometric technique) were used for NIBP measurements. Agreement between methods was assessed using Bland-Altman analysis. RESULTS Fifty-four patients (23 males) with a mean (+/- standard error) age of 57 +/- 3 years were studied. The mean BMI was 34.0 +/- 1.4 kg/m2. Mean arm circumference was 32 +/- 0.6 cm. IABP readings were obtained from the radial artery in all patients. Only eight patients were receiving vasoactive medications. Mean overall biases for the auscultatory and oscillometric techniques were 4.1 +/- 1.9 and -8.0 +/- 1.7 mmHg, respectively (P < 0.0001), with wide limits of agreement. The overestimation of blood pressure using the auscultatory technique was more important in patients with a BMI of 30 kg/m2 or greater. In hypertensive patients both NIBP methods underestimated blood pressure as determined using direct IABP measurement. CONCLUSIONS Oscillometric blood pressure measurements underestimated IABP readings regardless of patient BMI. Auscultatory measurements were also inaccurate, tending to underestimate systolic blood pressure and overestimate mean arterial and diastolic blood pressure. NIBP can be inaccurate among overweight critically ill patients and lead to erroneous interpretations of blood pressure.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008991 Monitoring, Physiologic The continuous measurement of physiological processes, blood pressure, heart rate, renal output, reflexes, respiration, etc., in a patient or experimental animal; includes pharmacologic monitoring, the measurement of administered drugs or their metabolites in the blood, tissues, or urine. Patient Monitoring,Monitoring, Physiological,Physiologic Monitoring,Monitoring, Patient,Physiological Monitoring
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001795 Blood Pressure Determination Techniques used for measuring BLOOD PRESSURE. Blood Pressure Determinations,Determination, Blood Pressure
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015331 Cohort Studies Studies in which subsets of a defined population are identified. These groups may or may not be exposed to factors hypothesized to influence the probability of the occurrence of a particular disease or other outcome. Cohorts are defined populations which, as a whole, are followed in an attempt to determine distinguishing subgroup characteristics. Birth Cohort Studies,Birth Cohort Study,Closed Cohort Studies,Cohort Analysis,Concurrent Studies,Historical Cohort Studies,Incidence Studies,Analysis, Cohort,Cohort Studies, Closed,Cohort Studies, Historical,Studies, Closed Cohort,Studies, Concurrent,Studies, Historical Cohort,Analyses, Cohort,Closed Cohort Study,Cohort Analyses,Cohort Studies, Birth,Cohort Study,Cohort Study, Birth,Cohort Study, Closed,Cohort Study, Historical,Concurrent Study,Historical Cohort Study,Incidence Study,Studies, Birth Cohort,Studies, Cohort,Studies, Incidence,Study, Birth Cohort,Study, Closed Cohort,Study, Cohort,Study, Concurrent,Study, Historical Cohort,Study, Incidence
D015924 Blood Pressure Monitors Devices for continuously measuring and displaying the arterial blood pressure. Monitors, Blood Pressure,Sphygmomanometers, Continuous,Blood Pressure Monitor,Continuous Sphygmomanometer,Continuous Sphygmomanometers,Monitor, Blood Pressure,Pressure Monitor, Blood,Pressure Monitors, Blood,Sphygmomanometer, Continuous
D015992 Body Mass Index An indicator of body density as determined by the relationship of BODY WEIGHT to BODY HEIGHT. BMI Quetelet Index,Quetelet's Index,Index, Body Mass,Index, Quetelet,Quetelets Index

Related Publications

Ali Araghi, and Joseph J Bander, and Jorge A Guzman
January 2024, Journal of intensive care medicine,
Ali Araghi, and Joseph J Bander, and Jorge A Guzman
February 2019, Blood pressure monitoring,
Ali Araghi, and Joseph J Bander, and Jorge A Guzman
September 2015, Medicine,
Ali Araghi, and Joseph J Bander, and Jorge A Guzman
April 2012, Critical care medicine,
Ali Araghi, and Joseph J Bander, and Jorge A Guzman
January 2017, Pakistan journal of medical sciences,
Ali Araghi, and Joseph J Bander, and Jorge A Guzman
February 2006, Intensive care medicine,
Copied contents to your clipboard!