Kinetic study on the irreversible thermal denaturation of Schistosoma japonicum glutathione S-transferase. 2006

Indalecio Quesada-Soriano, and Federico García-Maroto, and Luis García-Fuentes
Dpto. de Química Física, Bioquímica y Q. Inorgánica, Facultad de Ciencias Experimentales, Universidad de Almería, La Cañada de San Urbano, 04120 Almería, Spain.

The thermal unfolding pathway of the Schistosoma japonicum glutathione S-transferase (Sj26GST) was previously interpreted by applying equilibrium thermodynamics and a reversible two-state model (Kaplan et al., (1997) Protein Science, 6, 399-406), though weak support for this interpretation was provided. In our study, thermal denaturation of Sj26GST has been re-examined by differential scanning calorimetry in the pH range of 6.5-8.5 and in the presence of the substrate and S-hexylglutathione. Calorimetric traces were found to be irreversible and highly scan-rate dependent. Thermogram shapes, as well as their scan-rate dependence, can be globally explained by assuming that thermal denaturation takes place according to one irreversible step described by a first-order kinetic constant that changes with temperature, as given by an Arrhenius equation. On the basis of this model, values for the rate constant as a function of temperature and the activation energy have been determined. Data also indicate that binding of GSH or S-hexylglutathione just exert a very little stabilising effect on the dimeric structure of the molecule.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012549 Schistosoma japonicum A species of trematode blood flukes belonging to the family Schistosomatidae whose distribution is confined to areas of the ASIA, EASTERN. The intermediate host is a snail. It occurs in man and other mammals. Schistosoma japonicums,japonicum, Schistosoma
D015801 Helminth Proteins Proteins found in any species of helminth. Helminth Protein,Protein, Helminth,Proteins, Helminth
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular

Related Publications

Indalecio Quesada-Soriano, and Federico García-Maroto, and Luis García-Fuentes
January 2003, International journal of biological macromolecules,
Indalecio Quesada-Soriano, and Federico García-Maroto, and Luis García-Fuentes
March 2019, Acta tropica,
Indalecio Quesada-Soriano, and Federico García-Maroto, and Luis García-Fuentes
September 2002, Experimental parasitology,
Indalecio Quesada-Soriano, and Federico García-Maroto, and Luis García-Fuentes
July 1996, Biochemistry and molecular biology international,
Indalecio Quesada-Soriano, and Federico García-Maroto, and Luis García-Fuentes
September 2003, International journal of biological macromolecules,
Indalecio Quesada-Soriano, and Federico García-Maroto, and Luis García-Fuentes
February 1991, Biochemistry,
Indalecio Quesada-Soriano, and Federico García-Maroto, and Luis García-Fuentes
October 2005, Protein and peptide letters,
Indalecio Quesada-Soriano, and Federico García-Maroto, and Luis García-Fuentes
December 1996, Hybridoma,
Indalecio Quesada-Soriano, and Federico García-Maroto, and Luis García-Fuentes
December 1987, Immunology and cell biology,
Indalecio Quesada-Soriano, and Federico García-Maroto, and Luis García-Fuentes
December 1995, Journal of immunological methods,
Copied contents to your clipboard!