Defects of class-switch recombination. 2006

Luigi D Notarangelo, and Gaetana Lanzi, and Sophie Peron, and Anne Durandy
Department of Pediatrics and Angelo Nocivelli Institute for Molecular Medicine, University of Brescia Spedali Civili, Italy. notarang@med.unibs.it

Shaping of the secondary antibody repertoire is generated by means of class-switch recombination (CSR), which replaces IgM with other isotypes, and somatic hypermutation (SHM), which allows production of high-affinity antibodies. However, the molecular mechanisms underlying these important processes have long remained obscure. Immunodeficiency with hyper-IgM comprises a group of genetically heterogeneous defects of CSR variably associated with defects of SHM. The study of these patients has allowed us to recognize that both T-cell-B-cell interaction (resulting in CD40-mediated signaling) and intrinsic B-cell mechanisms are involved in CSR and SHM. Elucidation of the molecular defects underlying these disorders has been essential to better understand the molecular basis of Ig diversification and has offered the opportunity to define the clinical spectrum of these diseases and to prompt more accurate diagnostic and therapeutic approaches.

UI MeSH Term Description Entries
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D007153 Immunologic Deficiency Syndromes Syndromes in which there is a deficiency or defect in the mechanisms of immunity, either cellular or humoral. Antibody Deficiency Syndrome,Deficiency Syndrome, Immunologic,Deficiency Syndromes, Antibody,Deficiency Syndromes, Immunologic,Immunologic Deficiency Syndrome,Immunological Deficiency Syndromes,Antibody Deficiency Syndromes,Deficiency Syndrome, Antibody,Deficiency Syndrome, Immunological,Deficiency Syndromes, Immunological,Immunological Deficiency Syndrome,Syndrome, Antibody Deficiency,Syndrome, Immunologic Deficiency,Syndrome, Immunological Deficiency,Syndromes, Antibody Deficiency,Syndromes, Immunologic Deficiency,Syndromes, Immunological Deficiency
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003564 Cytidine Deaminase An enzyme that catalyzes the deamination of cytidine, forming uridine. EC 3.5.4.5. Cytidine Aminohydrolase,Aminohydrolase, Cytidine,Deaminase, Cytidine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006942 Hypergammaglobulinemia An excess of GAMMA-GLOBULINS in the serum due to chronic infections or PARAPROTEINEMIAS. Hyperimmunoglobulinemia,Hypergammaglobulinemias,Hyperimmunoglobulinemias
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB

Related Publications

Luigi D Notarangelo, and Gaetana Lanzi, and Sophie Peron, and Anne Durandy
January 2010, Advances in experimental medicine and biology,
Luigi D Notarangelo, and Gaetana Lanzi, and Sophie Peron, and Anne Durandy
October 2001, Current opinion in immunology,
Luigi D Notarangelo, and Gaetana Lanzi, and Sophie Peron, and Anne Durandy
January 1993, Annual review of immunology,
Luigi D Notarangelo, and Gaetana Lanzi, and Sophie Peron, and Anne Durandy
October 2019, Nature reviews. Immunology,
Luigi D Notarangelo, and Gaetana Lanzi, and Sophie Peron, and Anne Durandy
February 2005, Immunology letters,
Luigi D Notarangelo, and Gaetana Lanzi, and Sophie Peron, and Anne Durandy
January 2021, Clinical immunology (Orlando, Fla.),
Luigi D Notarangelo, and Gaetana Lanzi, and Sophie Peron, and Anne Durandy
March 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Luigi D Notarangelo, and Gaetana Lanzi, and Sophie Peron, and Anne Durandy
January 1988, Monographs in allergy,
Luigi D Notarangelo, and Gaetana Lanzi, and Sophie Peron, and Anne Durandy
May 2010, Clinical immunology (Orlando, Fla.),
Luigi D Notarangelo, and Gaetana Lanzi, and Sophie Peron, and Anne Durandy
July 2012, Arthritis research & therapy,
Copied contents to your clipboard!