Evaluation of insulin sensitivity and glucose effectiveness during a standardized breakfast test: comparison with the minimal model analysis of an intravenous glucose tolerance test. 2006

Ikram Aloulou, and Jean-Frederic Brun, and Jacques Mercier
Metabolic Unit, Service Central de Physiologie Clinique, Centre d'Exploration et de Réadaptation des Anomalies du Métabolisme Musculaire (CERAMM), CHU Lapeyronie, 34295 Montpellier cedex 5, France.

There is a need for reliable measurements of insulin sensitivity (SI) simpler than the euglycemic hyperinsulinemic clamp or the intravenous glucose tolerance test (IVGTT), which could be used when the simpler surrogates based on fasting insulin (Ib) and glucose (Gb) lose their validity. Several evaluations of SI derived from oral glucose tolerance test (OGTT) or its physiologic form, the standardized breakfast test (SBT), have been proposed. We aimed at determining which SBT-derived measurements of SI give the best prediction of the values obtained with the minimal model analysis of an IVGTT. Twenty-eight subjects (23 females and 5 males; age, 44.3+/-0.6 years) with a wide range of glucose tolerance randomly underwent a hyperglucidic SBT and an IVGTT with minimal model analysis. Correlations of 35 indices (converted if appropriated into similar units) with IVGTT-derived SI were calculated, and the accuracy of the empiric formulas obtained with the 11 best predictions were evaluated with Bland-Altman plots. Subjects covered all the spectrum of SI between 0.19 and 21.3 min-1/(microU.mL-1)x10(-4). Eight procedures yielded satisfactory predictions of minimal model SI: (1) SI (from Matsuda's composite index)=-1.24+65/(IbGbImGm)-0.5; (2) SI=1.89+2690/(IbGbImGm); (3) SI (from Bennett's index)=-2.93+5.16/(log Ibxlog Gb); (4) SI (from Sluiter's index)=0.2+2400/(IpGp); (5) SI=-8.54+38.4/(Belfiore's ISI index); (6) SI (from Cederholm's formula)=76/(Gm log Im); (7) SI=0.248+0.947/GbIm; (8) SI (from Mari's "oral glucose insulin sensitivity" index)=oral glucose insulin sensitivity/Ip; (9) Caumo's model. Glucose effectiveness Sg can also be accurately predicted by the following formula: Sg=2.921e-0.185(G60- Gb) (Ip=insulin peak; Gp=glucose peak; Ia=insulin area; Ga=glucose area; G60=glycemia at 60 minutes). The hyperglucidic SBT can provide accurate evaluations of SI and Sg, either by elaborated models or by simple empiric formulas.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011237 Predictive Value of Tests In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test. Negative Predictive Value,Positive Predictive Value,Predictive Value Of Test,Predictive Values Of Tests,Negative Predictive Values,Positive Predictive Values,Predictive Value, Negative,Predictive Value, Positive
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D005260 Female Females
D005951 Glucose Tolerance Test A test to determine the ability of an individual to maintain HOMEOSTASIS of BLOOD GLUCOSE. It includes measuring blood glucose levels in a fasting state, and at prescribed intervals before and after oral glucose intake (75 or 100 g) or intravenous infusion (0.5 g/kg). Intravenous Glucose Tolerance,Intravenous Glucose Tolerance Test,OGTT,Oral Glucose Tolerance,Oral Glucose Tolerance Test,Glucose Tolerance Tests,Glucose Tolerance, Oral
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Ikram Aloulou, and Jean-Frederic Brun, and Jacques Mercier
December 1990, The Journal of clinical endocrinology and metabolism,
Ikram Aloulou, and Jean-Frederic Brun, and Jacques Mercier
June 1994, Metabolism: clinical and experimental,
Ikram Aloulou, and Jean-Frederic Brun, and Jacques Mercier
June 2018, Mathematical biosciences,
Ikram Aloulou, and Jean-Frederic Brun, and Jacques Mercier
August 1989, Diabetes,
Ikram Aloulou, and Jean-Frederic Brun, and Jacques Mercier
September 1993, Metabolism: clinical and experimental,
Ikram Aloulou, and Jean-Frederic Brun, and Jacques Mercier
April 1994, Metabolism: clinical and experimental,
Ikram Aloulou, and Jean-Frederic Brun, and Jacques Mercier
November 1995, Metabolism: clinical and experimental,
Copied contents to your clipboard!