Dependence of cytosolic calcium in differentiating rat pheochromocytoma cells on calcium channels and intracellular stores. 1991

B F Reber, and H Reuter
Department of Pharmacology, University of Bern, Switzerland.

1. The rat clonal pheochromocytoma cell line (PC12) was used to study changes in the free intracellular Ca2+ concentration [( Ca2+]i) that are related to the distribution of L-type (dihydropyridine-sensitive) and N-type (omega-conotoxin-sensitive) calcium channels during nerve growth factor (NGF)-induced outgrowth of neurites. Changes in [Ca2+]i during K+ depolarization were recorded by means of Fura-2 single-cell microfluorimetry. 2. The basal [Ca2+]i of cells at rest was not altered by long-term treatment with NGF, neither in the cell bodies nor in the growth cones. K+ depolarization of the cells caused a rise in [Ca2+]i. 3. The dihydropyridine (DHP) nifedipine alone, or together with omega-conotoxin (omega-CgTX), were similarly effective in inhibiting the K(+)-induced increase in [Ca2+]i in untreated and NGF-treated cell bodies, arguing for a preferential distribution of L-type Ca2+ channels in this cell area. By contrast, after 6-7 days exposure to NGF the K(+)-induced initial transient rise of [Ca2+]i in growth cones was very sensitive to omega-CgTX, whereas nifedipine affected only the sustained rise. 4. PC12 cells also contain caffeine- and inositol trisphosphate (IP3)-sensitive intracellular Ca2+ stores. Addition of 30 mM-caffeine caused a fast transient rise in [Ca2+]i. The extent of filling of the caffeine-sensitive pool affected basal [Ca2+]i. These Ca2+ storage sites were empty under normal culture conditions. However, a single K+ depolarization caused filling of the stores, followed by spontaneous depletion (50% in about 5 min) after wash-out of high [K+]o. When the caffeine-sensitive stores were empty, the rise in [Ca2+]i was attenuated during submaximal depolarization. Caffeine-sensitive Ca2+ stores were also present in some growth cones, though with much smaller capacities than in cell bodies. 5. Mobilization of Ca2+ from the IP3-sensitive store, by bradykinin exposure, was found to be independent of the caffeine-sensitive pool. There was no apparent 'cross-talk' between both Ca2+ pools. 6. We conclude that changes in [Ca2+]i in cell bodies depend on both membrane Ca2+ channels and intracellular Ca2+ stores. During NGF-induced differentiation there is a predominance of N-type Ca2+ channels in growth cones, while Ca2+ stores are of minor importance in these structures.

UI MeSH Term Description Entries
D010673 Pheochromocytoma A usually benign, well-encapsulated, lobular, vascular tumor of chromaffin tissue of the ADRENAL MEDULLA or sympathetic paraganglia. The cardinal symptom, reflecting the increased secretion of EPINEPHRINE and NOREPINEPHRINE, is HYPERTENSION, which may be persistent or intermittent. During severe attacks, there may be HEADACHE; SWEATING, palpitation, apprehension, TREMOR; PALLOR or FLUSHING of the face, NAUSEA and VOMITING, pain in the CHEST and ABDOMEN, and paresthesias of the extremities. The incidence of malignancy is as low as 5% but the pathologic distinction between benign and malignant pheochromocytomas is not clear. (Dorland, 27th ed; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p1298) Pheochromocytoma, Extra-Adrenal,Extra-Adrenal Pheochromocytoma,Extra-Adrenal Pheochromocytomas,Pheochromocytoma, Extra Adrenal,Pheochromocytomas,Pheochromocytomas, Extra-Adrenal
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

B F Reber, and H Reuter
September 1989, FEBS letters,
B F Reber, and H Reuter
August 1985, Clinical science (London, England : 1979),
B F Reber, and H Reuter
November 1994, Biochemical pharmacology,
B F Reber, and H Reuter
March 1992, The American journal of physiology,
B F Reber, and H Reuter
February 1996, The Biochemical journal,
Copied contents to your clipboard!