Cross-tolerance and enhanced sensitivity to the response rate-decreasing effects of opioids with varying degrees of efficacy at the mu receptor. 1991

M J Picker, and J Yarbrough
Department of Psychology, University of North Carolina, Chapel Hill 27599-3270.

The purpose of the present experiment was to determine whether the effects of opioids with varying degrees of efficacy at the mu receptor are differentially altered in morphine-tolerant pigeons. To this end, dose-effect curves were determined for high, intermediate, and low efficacy mu agonists in pigeons responding under a schedule of food presentation prior to, during, and after exposure to a regimen of chronic morphine administration. In pigeons treated with 56 mg/kg/daily morphine, the dose-effect curves for the rate-decreasing effects of the high-efficacy mu agonists morphine and fentanyl were shifted to the right of their prechronic positions (i.e., tolerance). A small degree of tolerance was also conferred to the intermediate-efficacy mu agonists (-)-pentazocine and (-)-metazocine, but not to nalbuphine or butorphanol. In contrast to the effects obtained with these mu agonists, the chronic morphine regimen shifted the dose-effects curves of the mu antagonist naloxone and the low-efficacy mu agonists nalorphine and levallorphan to the left of their prechronic positions (i.e., enhanced sensitivity). These findings demonstrate that morphine tolerance confers cross-tolerance to other high efficacy mu agonists, enhanced sensitivity to mu antagonists and low efficacy mu agonists, and little or no cross-tolerance to intermediate efficacy mu agonists. Disadvantages of using schedule-controlled responding to examine the effects of intermediate efficacy mu agonists are discussed.

UI MeSH Term Description Entries
D007977 Levallorphan An opioid antagonist with properties similar to those of NALOXONE; in addition it also possesses some agonist properties. It should be used cautiously; levallorphan reverses severe opioid-induced respiratory depression but may exacerbate respiratory depression such as that induced by alcohol or other non-opioid central depressants. (From Martindale, The Extra Pharmacopoeia, 30th ed, p683) Naloxiphan,Lorfan
D009269 Nalorphine A narcotic antagonist with some agonist properties. It is an antagonist at mu opioid receptors and an agonist at kappa opioid receptors. Given alone it produces a broad spectrum of unpleasant effects and it is considered to be clinically obsolete. Allylnormorphine,Lethidrone,Nalorphine Hydrobromide,Nalorphine Hydrochloride,Nalorphine, (14 alpha)-Isomer,Nalorphine, L-tartrate (1:1),Hydrobromide, Nalorphine,Hydrochloride, Nalorphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D010856 Columbidae Family in the order COLUMBIFORMES, comprised of pigeons or doves. They are BIRDS with short legs, stout bodies, small heads, and slender bills. Some sources call the smaller species doves and the larger pigeons, but the names are interchangeable. Columba livia,Doves,Pigeons,Domestic Pigeons,Feral Pigeons,Rock Doves,Rock Pigeons,Domestic Pigeon,Dove,Dove, Rock,Doves, Rock,Feral Pigeon,Pigeon,Pigeon, Domestic,Pigeon, Feral,Pigeon, Rock,Pigeons, Domestic,Pigeons, Feral,Pigeons, Rock,Rock Dove,Rock Pigeon
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D003216 Conditioning, Operant Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced. Instrumental Learning,Learning, Instrumental,Operant Conditioning,Conditionings, Operant,Instrumental Learnings,Learnings, Instrumental,Operant Conditionings
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M J Picker, and J Yarbrough
November 1992, The Journal of pharmacology and experimental therapeutics,
M J Picker, and J Yarbrough
September 1997, Psychopharmacology,
M J Picker, and J Yarbrough
January 1994, Psychopharmacology,
Copied contents to your clipboard!