Mutations of conserved glycine residues within the membrane-spanning domain of human immunodeficiency virus type 1 gp41 can inhibit membrane fusion and incorporation of Env onto virions. 2006

Kosuke Miyauchi, and Rachael Curran, and Erin Matthews, and Jun Komano, and Tyuji Hoshino, and Don M Engelman, and Zene Matsuda
Laboratory of Virology and Pathogenesis, AIDS Reserach Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.

The membrane-spanning domain (MSD) of HIV-1 envelope protein (Env) has an additional glycine residue within a well-conserved putative transmembrane helix-helix interaction motif, GXXXG, and forms a G(690)G(691)XXG(694) sequence (G, glycine; X, any residues; the numbering indicates the position within the Env of an infectious molecular clone, HXB2). Different from vesicular stomatitis virus G (VSV-G), the glycine residues of the GXXXG motif of HIV-1 showed higher tolerance against mutations, and a simultaneous substitution of G690 and G694 with leucine residues only modestly decreased fusion activity and replication capacity of HIV-1. When G691 was further substituted with alanine, phenylalanine or leucine residue while G690 and G694 were substituted with leucine residues, the efficiency of membrane fusion decreased, with the decrease greatest occurring with the leucine substitution, a less severe decrease with phenylalanine, and the least severe decrease with alanine. Substitution with leucine residue also decreased the incorporation of Env onto virions, and the mutant showed the most delayed replication profile. Thus the presence of the extra glycine residue, G691, may increase the tolerance of the other two glycine residues against mutations than VSV-G. The fact that a more severe defect was observed for the leucine residue than the phenylalanine residue suggested that the function of Env depended on the steric nature rather than on the simple volume of the side chain of the amino acid residue at position 691. Based on this result, we propose a hypothetical model of the association among MSDs of gp41, in which G(691) locates itself near the helix-helix interface.

UI MeSH Term Description Entries
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Kosuke Miyauchi, and Rachael Curran, and Erin Matthews, and Jun Komano, and Tyuji Hoshino, and Don M Engelman, and Zene Matsuda
May 2000, Journal of virology,
Kosuke Miyauchi, and Rachael Curran, and Erin Matthews, and Jun Komano, and Tyuji Hoshino, and Don M Engelman, and Zene Matsuda
April 2002, Journal of virology,
Kosuke Miyauchi, and Rachael Curran, and Erin Matthews, and Jun Komano, and Tyuji Hoshino, and Don M Engelman, and Zene Matsuda
January 1993, Journal of virology,
Kosuke Miyauchi, and Rachael Curran, and Erin Matthews, and Jun Komano, and Tyuji Hoshino, and Don M Engelman, and Zene Matsuda
January 2010, Journal of virology,
Kosuke Miyauchi, and Rachael Curran, and Erin Matthews, and Jun Komano, and Tyuji Hoshino, and Don M Engelman, and Zene Matsuda
March 2007, Virus research,
Kosuke Miyauchi, and Rachael Curran, and Erin Matthews, and Jun Komano, and Tyuji Hoshino, and Don M Engelman, and Zene Matsuda
November 2009, Journal of virology,
Kosuke Miyauchi, and Rachael Curran, and Erin Matthews, and Jun Komano, and Tyuji Hoshino, and Don M Engelman, and Zene Matsuda
October 2001, Journal of virology,
Kosuke Miyauchi, and Rachael Curran, and Erin Matthews, and Jun Komano, and Tyuji Hoshino, and Don M Engelman, and Zene Matsuda
March 1999, Journal of virology,
Kosuke Miyauchi, and Rachael Curran, and Erin Matthews, and Jun Komano, and Tyuji Hoshino, and Don M Engelman, and Zene Matsuda
May 2011, Protein & cell,
Kosuke Miyauchi, and Rachael Curran, and Erin Matthews, and Jun Komano, and Tyuji Hoshino, and Don M Engelman, and Zene Matsuda
April 2006, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!