Lack of correlation between sigma binding potency and inhibition of contractions in the mouse vas deferens preparation. 1991

D L DeHaven-Hudkins, and L M Hildebrand, and L C Fleissner, and S J Ward
Department of Enzymology and Receptor Biochemistry, Sterling Research Group, Malvern, PA 19355.

The existence of sigma receptors in the mouse, rat and guinea pig vasa deferentia has previously been proposed, although drug effects are inconsistent and generally occur only at high concentrations. The purpose of the present study was to evaluate lower, physiologically relevant concentrations of ligands for possible sigma effects on electrically stimulated twitch contractions in the mouse vas deferens (MVD). Putative sigma agonists and antagonists all inhibited 0.1 Hz electrically stimulated twitch contractions in nM concentrations. Inhibitory activity plateaued between 20 and 60% for all compounds except 1,3-di(2-tolyl)guanidine (DTG), which had a shallow concentration-effect curve. Subsequent to the plateau, higher concentrations (30 microM) of rimcazole and haloperidol fully inhibited electrically stimulated twitch contractions. There was no correlation between inhibitory potency or maximal effect in the MVD and binding potency at sigma sites in either MVD or guinea pig brain. The inhibitory effects of R(+)-3-(3-hydroxyphenyl)-N-1-propylpiperidine ((+)3-PPP) or DTG on electrically stimulated twitch contractions were not antagonized by the putative sigma antagonists DTG, haloperidol, rimcazole or BMY-14802, nor by alpha 2-adrenoceptor, dopamine D1, dopamine D2 or opiate antagonists. Although the mechanism of sigma ligand effects in the MVD has not been established, the data caution against a presumption that effects of sigma ligands on electrically stimulated twitch contractions in this preparation are mediated by sigma receptors.

UI MeSH Term Description Entries
D008297 Male Males
D008729 Methoxamine An alpha-1 adrenergic agonist that causes prolonged peripheral VASOCONSTRICTION. Methoxamedrin,Methoxamine Hydrochloride,Metoxamine Wellcome,Vasoxin,Vasoxine,Vasoxyl,Vasylox,Hydrochloride, Methoxamine,Wellcome, Metoxamine
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.

Related Publications

D L DeHaven-Hudkins, and L M Hildebrand, and L C Fleissner, and S J Ward
February 1993, European journal of pharmacology,
D L DeHaven-Hudkins, and L M Hildebrand, and L C Fleissner, and S J Ward
March 2006, The Journal of pharmacy and pharmacology,
D L DeHaven-Hudkins, and L M Hildebrand, and L C Fleissner, and S J Ward
September 1980, Brain research,
D L DeHaven-Hudkins, and L M Hildebrand, and L C Fleissner, and S J Ward
January 1975, The Journal of pharmacology and experimental therapeutics,
D L DeHaven-Hudkins, and L M Hildebrand, and L C Fleissner, and S J Ward
May 1997, European journal of pharmacology,
D L DeHaven-Hudkins, and L M Hildebrand, and L C Fleissner, and S J Ward
September 1979, The Journal of pharmacy and pharmacology,
D L DeHaven-Hudkins, and L M Hildebrand, and L C Fleissner, and S J Ward
May 1977, The Journal of pharmacy and pharmacology,
D L DeHaven-Hudkins, and L M Hildebrand, and L C Fleissner, and S J Ward
October 1989, British journal of pharmacology,
D L DeHaven-Hudkins, and L M Hildebrand, and L C Fleissner, and S J Ward
January 1990, Life sciences,
D L DeHaven-Hudkins, and L M Hildebrand, and L C Fleissner, and S J Ward
January 1983, Cellular and molecular biology,
Copied contents to your clipboard!