Photophysical properties and excitation polarization of fac/mer-ruthenium complexes with 5'-amino-2,2'-bipyridine-5-carboxylic acid derivatives. 2006

Masato Kyakuno, and Shigero Oishi, and Hitoshi Ishida
Department of Chemistry, School of Science, Kitasato University, Kitasato, Sagamihara, Kanagawa 228-8555, Japan.

Novel ruthenium(II) complexes, fac/mer-[Ru(MeCO-5Bpy-R)3]2+ (H-5Bpy-OH = 5'-amino-2,2'-bipyridine-5-carboxylic acid; R = -NHtBu, -NH(cHex), -N(cHex)2), have been synthesized. The fac and mer isomers have been successfully separated using HPLC techniques, and their photophysical/electrochemical properties have been investigated. In the absorption and emission spectra of fac/mer-[Ru(MeCO-5Bpy-R)3]2+ with secondary amines (R = -N(cHex)2) in acetonitrile at room temperature, the maximum wavelengths based on the MLCT are longer than those for the amide derivatives with primary amines (R = -NHtBu, -NH(cHex)). A small solvent effect on the photophysical properties between fac- and mer-[Ru(MeCO-5Bpy-NHtBu)3]2+ has been observed. The excitation polarization spectra, giving P values reflecting the relation between the absorption and the emission oscillators, for the fac- and mer-ruthenium(II) complexes (C3 and C1 symmetry, respectively) have been measured for the first time. Almost no difference in the excitation polarization spectra between the fac and mer complexes is found, and these spectra are similar to that for [Ru(bpy)3]2+ with D3 symmetry. This finding suggests that the orientations of the absorption and emission oscillators, in the case of the ruthenium(II) tris(2,2'-bipyridine) derivatives, would not be affected by the symmetries of the complexes and that the P values for any derivatives would be similar to that for [Ru(bpy)3]2+.

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009942 Organometallic Compounds A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed) Metallo-Organic Compound,Metallo-Organic Compounds,Metalloorganic Compound,Organometallic Compound,Metalloorganic Compounds,Compound, Metallo-Organic,Compound, Metalloorganic,Compound, Organometallic,Compounds, Metallo-Organic,Compounds, Metalloorganic,Compounds, Organometallic,Metallo Organic Compound,Metallo Organic Compounds
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D000577 Amides Organic compounds containing the -CO-NH2 radical. Amides are derived from acids by replacement of -OH by -NH2 or from ammonia by the replacement of H by an acyl group. (From Grant & Hackh's Chemical Dictionary, 5th ed) Amide
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D012428 Ruthenium A hard, brittle, grayish-white rare earth metal with an atomic symbol Ru, atomic number 44, and atomic weight 101.07. It is used as a catalyst and hardener for PLATINUM and PALLADIUM.
D013057 Spectrum Analysis The measurement of the amplitude of the components of a complex waveform throughout the frequency range of the waveform. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Spectroscopy,Analysis, Spectrum,Spectrometry
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs

Related Publications

Masato Kyakuno, and Shigero Oishi, and Hitoshi Ishida
June 2007, The journal of physical chemistry. B,
Masato Kyakuno, and Shigero Oishi, and Hitoshi Ishida
November 2006, Inorganic chemistry,
Masato Kyakuno, and Shigero Oishi, and Hitoshi Ishida
June 2002, Chemical communications (Cambridge, England),
Masato Kyakuno, and Shigero Oishi, and Hitoshi Ishida
March 2004, Inorganic chemistry,
Masato Kyakuno, and Shigero Oishi, and Hitoshi Ishida
May 2006, The journal of physical chemistry. B,
Masato Kyakuno, and Shigero Oishi, and Hitoshi Ishida
April 2020, RSC advances,
Masato Kyakuno, and Shigero Oishi, and Hitoshi Ishida
April 2020, Inorganic chemistry,
Masato Kyakuno, and Shigero Oishi, and Hitoshi Ishida
April 2004, Dalton transactions (Cambridge, England : 2003),
Masato Kyakuno, and Shigero Oishi, and Hitoshi Ishida
June 2008, Dalton transactions (Cambridge, England : 2003),
Masato Kyakuno, and Shigero Oishi, and Hitoshi Ishida
November 1996, Inorganic chemistry,
Copied contents to your clipboard!