Treatment of thrombotic thrombocytopenic purpura. 2006

S Fontana, and J A Kremer Hovinga, and B Lämmle, and B Mansouri Taleghani
Department of Haematology and Central Haematology Laboratory, University Hospital, Inselspital, Bern, Switzerland. stefano.fontana@insel.ch

Thrombotic thrombocytopenic purpura (TTP), characterized by thrombocytopenia and microangiopathic haemolytic anaemia, was almost universally fatal until the introduction of plasma exchange (PE) therapy in the 1970s. Based on clinical studies, daily PE has become the first-choice therapy since 1991. Recent findings may explain its effectiveness, which may include, in particular, the removal of anti-ADAMTS13 autoantibodies and unusually large von Willebrand factor multimers and/or supply of ADAMTS13 in acquired idiopathic or congenital TTP. Based on currently available data, the favoured PE regimen is daily PE [involving replacement of 1-1.5 times the patient's plasma volume with fresh-frozen plasma (FFP)] until remission. Adverse events of treatment are mainly related to central venous catheters. The potential reduction of plasma related side-effects, such as transfusion-related acute lung injury (TRALI) or febrile transfusion reactions by use of solvent-detergent treated (S/D) plasma instead of FFP is not established by controlled clinical studies. Uncontrolled clinical observations and the hypothesis of an autoimmune process in a significant part of the patients with acquired idiopathic TTP suggest a beneficial effect of adjunctive therapy with corticosteroids. Other immunosuppressive treatments are not tested in controlled trials and should be reserved for refractory or relapsing disease. There is no convincing evidence for the use of antiplatelet agents. Supportive treatment with transfusion of red blood cells or platelets has to be evaluated on a clinical basis, but the transfusion trigger for platelets should be very restrictive. Further controlled, prospective studies should consider the different pathophysiological features of thrombotic microangiopathies, address the prognostic significance of ADAMTS13 and explore alternative exchange fluids to FFP, the role of immunosuppressive therapies and of new plasma saving approaches as recombinant ADAMTS13 and protein A immunoadsorption.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D010949 Plasma The residual portion of BLOOD that is left after removal of BLOOD CELLS by CENTRIFUGATION without prior BLOOD COAGULATION. Blood Plasma,Fresh Frozen Plasma,Blood Plasmas,Fresh Frozen Plasmas,Frozen Plasma, Fresh,Frozen Plasmas, Fresh,Plasma, Blood,Plasma, Fresh Frozen,Plasmas,Plasmas, Blood,Plasmas, Fresh Frozen
D010951 Plasma Exchange Removal of plasma and replacement with various fluids, e.g., fresh frozen plasma, plasma protein fractions (PPF), albumin preparations, dextran solutions, saline. Used in treatment of autoimmune diseases, immune complex diseases, diseases of excess plasma factors, and other conditions. Exchange, Plasma,Exchanges, Plasma,Plasma Exchanges
D010975 Platelet Aggregation Inhibitors Drugs or agents which antagonize or impair any mechanism leading to blood platelet aggregation, whether during the phases of activation and shape change or following the dense-granule release reaction and stimulation of the prostaglandin-thromboxane system. Antiaggregants, Platelet,Antiplatelet Agent,Antiplatelet Agents,Antiplatelet Drug,Blood Platelet Aggregation Inhibitor,Blood Platelet Antagonist,Blood Platelet Antiaggregant,PAR-1 Antagonists,Platelet Aggregation Inhibitor,Platelet Antagonist,Platelet Antagonists,Platelet Antiaggregant,Platelet Antiaggregants,Platelet Inhibitor,Protease-Activated Receptor-1 Antagonists,Antiplatelet Drugs,Blood Platelet Aggregation Inhibitors,Blood Platelet Antagonists,Blood Platelet Antiaggregants,Platelet Inhibitors,Agent, Antiplatelet,Aggregation Inhibitor, Platelet,Antagonist, Blood Platelet,Antagonist, Platelet,Antiaggregant, Blood Platelet,Antiaggregant, Platelet,Drug, Antiplatelet,Inhibitor, Platelet,Inhibitor, Platelet Aggregation,PAR 1 Antagonists,Platelet Antagonist, Blood,Platelet Antiaggregant, Blood,Protease Activated Receptor 1 Antagonists
D011697 Purpura, Thrombotic Thrombocytopenic An acquired, congenital, or familial disorder caused by PLATELET AGGREGATION with THROMBOSIS in terminal arterioles and capillaries. Clinical features include THROMBOCYTOPENIA; HEMOLYTIC ANEMIA; AZOTEMIA; FEVER; and thrombotic microangiopathy. The classical form also includes neurological symptoms and end-organ damage, such as RENAL FAILURE. Mutations in the ADAMTS13 PROTEIN gene have been identified in familial cases. Moschkowitz Disease,Purpura, Thrombotic Thrombopenic,Thrombotic Thrombocytopenic Purpura, Congenital,Thrombotic Thrombocytopenic Purpura, Familial,Congenital Thrombotic Thrombocytopenic Purpura,Familial Thrombotic Thrombocytopenia Purpura,Familial Thrombotic Thrombocytopenic Purpura,Microangiopathic Hemolytic Anemia, Congenital,Moschcowitz Disease,Schulman-Upshaw Syndrome,Thrombotic Microangiopathy, Familial,Thrombotic Thrombocytopenic Purpura,Upshaw Factor, Deficiency of,Upshaw-Schulman Syndrome,Familial Thrombotic Microangiopathy,Microangiopathy, Familial Thrombotic,Schulman Upshaw Syndrome,Thrombocytopenic Purpura, Thrombotic,Thrombopenic Purpura, Thrombotic,Thrombotic Thrombopenic Purpura,Upshaw Schulman Syndrome
D012008 Recurrence The return of a sign, symptom, or disease after a remission. Recrudescence,Relapse,Recrudescences,Recurrences,Relapses
D001803 Blood Transfusion The introduction of whole blood or blood component directly into the blood stream. (Dorland, 27th ed) Blood Transfusions,Transfusion, Blood,Transfusions, Blood
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071120 ADAMTS13 Protein An ADAMTS protease that contains eight thrombospondin (TS) motifs. It cleaves VON WILLEBRAND FACTOR to control vWF-mediated THROMBOSIS. Mutations in the ADAMTS13 gene have been identified in familial cases of PURPURA, THROMBOTIC THROMBOCYTOPENIC and defects in ADAMTS13 activity are associated with MYOCARDIAL INFARCTION; BRAIN ISCHEMIA; PRE-ECLAMPSIA; and MALARIA. A Disintegrin and Metalloproteinase with Thrombospondin Motifs 13 Protein,ADAMTS-13 Protein,ADAMTS13 Protease,vWF-Cleaving Protease,von Willebrand Factor-Cleaving Protease,ADAMTS 13 Protein,vWF Cleaving Protease,von Willebrand Factor Cleaving Protease
D017211 Treatment Failure A measure of the quality of health care by assessment of unsuccessful results of management and procedures used in combating disease, in individual cases or series. Failure, Treatment,Failures, Treatment,Treatment Failures

Related Publications

S Fontana, and J A Kremer Hovinga, and B Lämmle, and B Mansouri Taleghani
February 1978, Journal of oral surgery (American Dental Association : 1965),
S Fontana, and J A Kremer Hovinga, and B Lämmle, and B Mansouri Taleghani
October 2014, [Rinsho ketsueki] The Japanese journal of clinical hematology,
S Fontana, and J A Kremer Hovinga, and B Lämmle, and B Mansouri Taleghani
October 1987, Medicina clinica,
S Fontana, and J A Kremer Hovinga, and B Lämmle, and B Mansouri Taleghani
January 1983, Lijecnicki vjesnik,
S Fontana, and J A Kremer Hovinga, and B Lämmle, and B Mansouri Taleghani
February 1997, Sangre,
S Fontana, and J A Kremer Hovinga, and B Lämmle, and B Mansouri Taleghani
April 2005, Intensive care medicine,
S Fontana, and J A Kremer Hovinga, and B Lämmle, and B Mansouri Taleghani
July 2021, Terapevticheskii arkhiv,
S Fontana, and J A Kremer Hovinga, and B Lämmle, and B Mansouri Taleghani
June 2021, Terapevticheskii arkhiv,
S Fontana, and J A Kremer Hovinga, and B Lämmle, and B Mansouri Taleghani
January 1977, Annals of internal medicine,
S Fontana, and J A Kremer Hovinga, and B Lämmle, and B Mansouri Taleghani
December 1992, The Journal of pediatrics,
Copied contents to your clipboard!