Activation of gamma-aminobutyric acid insensitive chloride channels in mouse brain synaptic vesicles by avermectin B1a. 1991

G T Payne, and D M Soderlund
Department of Entomology, Cornell University, Geneva, New York 14456.

The interaction of avermectin B1a (AVMB1a) with mouse brain chloride channels was characterized using a radiochloride efflux assay. The loss of intravesicular chloride from synaptoneurosomes preloaded with 36Cl involved an initial rapid phase followed by a slower phase that approached equilibrium within 10 min. AVMB1a stimulated a 30% loss of intravesicular chloride within the first 2 s of exposure; however, AVMB1a had no effect on the rate of the slower phase of chloride loss. Experiments with lysed synaptoneurosomes showed that both chloride loading and basal and AVMB1a-stimulated chloride release required the presence of intact vesicles. The efflux of 36Cl from mouse brain synaptosomes and the stimulation of efflux by AVMB1a were qualitatively similar to the results obtained with synaptoneurosomes but involved much lower overall levels of chloride loading and release. AVMB1a produced half-maximal stimulation of chloride efflux from synaptoneurosomes at a concentration of 2.1 +/- 0.3 microM and a 35.4 +/- 1.4% maximal loss of intravesicular chloride at saturating concentrations. gamma-Aminobutyric acid (GABA), bicuculline, or the chloride channel blockers picrotoxinin, t-butylbicyclophosphorothionate (TBPS) 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and anthracene 9-carboxylic acid (9-CA) had little or no effect on the loss of chloride from synaptoneurosomes either in the presence or the absence of AVMB1a. However, the chlorinated cycloalkane insecticides dieldrin and lindane were equally effective as inhibitors of GABA-dependent chloride uptake and AVMB1a-stimulated chloride efflux. These data demonstrate that AVMB1a-stimulated chloride efflux from mouse brain synaptic vesicles results from the activation of GABA-insensitive chloride channels and that this action is distinct from their previously documented effects on GABA-gated chloride channels in mouse brain preparations. Our findings imply that both GABA-gated and GABA-insensitive chloride channels may be toxicologically significant targets for the action of avermectins.

UI MeSH Term Description Entries
D007559 Ivermectin A mixture of mostly avermectin H2B1a (RN 71827-03-7) with some avermectin H2B1b (RN 70209-81-3), which are macrolides from STREPTOMYCES avermitilis. It binds glutamate-gated chloride channel to cause increased permeability and hyperpolarization of nerve and muscle cells. It also interacts with other CHLORIDE CHANNELS. It is a broad spectrum antiparasitic that is active against microfilariae of ONCHOCERCA VOLVULUS but not the adult form. Eqvalan,Ivomec,MK-933,Mectizan,Stromectol,MK 933,MK933
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

G T Payne, and D M Soderlund
March 1986, Journal of biochemical toxicology,
G T Payne, and D M Soderlund
February 1982, Journal of neurochemistry,
G T Payne, and D M Soderlund
September 1980, Biochemical and biophysical research communications,
G T Payne, and D M Soderlund
July 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G T Payne, and D M Soderlund
January 1985, Regulatory peptides. Supplement,
Copied contents to your clipboard!