Influence of selective phosphodiesterase inhibitors on human neutrophil functions and levels of cAMP and Cai. 1991

C Schudt, and S Winder, and S Forderkunz, and A Hatzelmann, and V Ullrich
Department of Biochemistry, Byk Gulden Pharmaceuticals, Federal Republic of Germany.

Chromatographic analysis of 3',5'-cyclic nucleotide phosphodiesterase (PDE) isoenzymes in the cytosol of human neutrophils shows the predominant presence of PDE IV (cAMP specific) and PDE V (cGMP specific). PDE IV is characterized by (1) cAMP selectivity, (2) a KM for cAMP of 1.2 microM and (3) a typical rank order of IC50-values for PDE inhibitors: 0.13, 0.17, 47 and 9.5 microM for PDE IV selective rolipram, PDE III/IV selective zardaverine, PDE III selective motapizone and unselective 3-isobutyl-1-methylxanthine (IBMX), respectively. Functions of polymorphonuclear leukocytes (PMN) such as N-formylmethionyl-leucyl-phenylalanine (fMLP)-stimulated superoxide release and fMLP/thimerosal elicited leukotriene (LT) biosynthesis are inhibited by these PDE inhibitors with the same rank order and even lower IC50-values. Measurements of changes in cytosolic Cai in Fura-2 loaded PMN demonstrate a transient Cai increase after stimulation with 0.1 microM fMLP and an additional sustained elevation of Cai levels in the presence of thimerosal. PDE inhibitors suppress this sustained phase of Cai release with the same rank order of IC50-values as LT biosynthesis. The correlation between fMLP/thimerosal-induced LT biosynthesis and Cai levels reveal a Cai threshold of 150 nM for arachidonic acid metabolism. cAMP levels in PMN were elevated by PDE inhibitors alone by less than 2-fold. In the presence of fMLP however, cAMP was increased up to 10-fold and the efficacy of PDE inhibitors to increase cAMP paralleled their potency to inhibit PDE IV.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010726 Phosphodiesterase Inhibitors Compounds which inhibit or antagonize the biosynthesis or actions of phosphodiesterases. Phosphodiesterase Antagonists,Phosphodiesterase Inhibitor,Phosphoric Diester Hydrolase Inhibitors,Antiphosphodiesterases,Inhibitor, Phosphodiesterase
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D001094 Arachidonate 5-Lipoxygenase An enzyme that catalyzes the oxidation of arachidonic acid to yield 5-hydroperoxyarachidonate (5-HPETE) which is rapidly converted by a peroxidase to 5-hydroxy-6,8,11,14-eicosatetraenoate (5-HETE). The 5-hydroperoxides are preferentially formed in leukocytes. 5-Lipoxygenase,Arachidonic Acid 5-Lipoxygenase,LTA4 Synthase,Leukotriene A Synthase,Leukotriene A4 Synthase,Leukotriene A4 Synthetase,5 Lipoxygenase,5-Lipoxygenase, Arachidonate,5-Lipoxygenase, Arachidonic Acid,Arachidonate 5 Lipoxygenase,Arachidonic Acid 5 Lipoxygenase,Synthase, LTA4,Synthase, Leukotriene A,Synthase, Leukotriene A4,Synthetase, Leukotriene A4
D015289 Leukotrienes A family of biologically active compounds derived from arachidonic acid by oxidative metabolism through the 5-lipoxygenase pathway. They participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. They have potent actions on many essential organs and systems, including the cardiovascular, pulmonary, and central nervous system as well as the gastrointestinal tract and the immune system. Leukotriene

Related Publications

C Schudt, and S Winder, and S Forderkunz, and A Hatzelmann, and V Ullrich
February 1995, British journal of pharmacology,
C Schudt, and S Winder, and S Forderkunz, and A Hatzelmann, and V Ullrich
June 1997, Journal of medicinal chemistry,
C Schudt, and S Winder, and S Forderkunz, and A Hatzelmann, and V Ullrich
October 1990, Acta physiologica Scandinavica,
C Schudt, and S Winder, and S Forderkunz, and A Hatzelmann, and V Ullrich
June 1993, Biochemical pharmacology,
C Schudt, and S Winder, and S Forderkunz, and A Hatzelmann, and V Ullrich
July 1993, Journal of immunology (Baltimore, Md. : 1950),
C Schudt, and S Winder, and S Forderkunz, and A Hatzelmann, and V Ullrich
December 1981, Archives of andrology,
C Schudt, and S Winder, and S Forderkunz, and A Hatzelmann, and V Ullrich
January 1990, The International journal of biochemistry,
C Schudt, and S Winder, and S Forderkunz, and A Hatzelmann, and V Ullrich
April 2000, Critical care medicine,
C Schudt, and S Winder, and S Forderkunz, and A Hatzelmann, and V Ullrich
December 2008, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
C Schudt, and S Winder, and S Forderkunz, and A Hatzelmann, and V Ullrich
January 2013, Current pharmaceutical design,
Copied contents to your clipboard!