Eight amino acid residues in transmembrane segments of yeast glucose transporter Hxt2 are required for high affinity transport. 2006

Toshiko Kasahara, and Masaji Ishiguro, and Michihiro Kasahara
Laboratory of Biophysics, School of Medicine, Teikyo University, Hachioji, Tokyo 192-0395, Japan.

Hxt2 and Hxt1 are high affinity and low affinity facilitative glucose transporter paralogs of Saccharomyces cerevisiae, respectively, that differ at 75 amino acid positions in their 12 transmembrane segments (TMs). Comprehensive analysis of chimeras of these two proteins has previously revealed that TMs 1, 5, 7, and 8 of Hxt2 are required for high affinity glucose transport activity and that leucine 201 in TM5 is the most important in this regard of the 20 amino acid residues in these regions that differ between Hxt2 and Hxt1. To evaluate the importance of the remaining residues, we systematically shuffled the amino acids at these positions and screened the resulting proteins for high affinity and high capacity glucose transport activity. In addition to leucine 201 (TM5), four residues of Hxt2 (leucine 59 and leucine 61 in TM1, asparagine 331 in TM7, and phenylalanine 366 in TM8) were found to be important for such activity. Furthermore, phenylalanine 198 (TM5), alanine 363 (TM8), and either valine 316 (TM7) or alanine 368 (TM8) were found to be supportive of maximal activity. Construction of a homology model suggested that asparagine 331 interacts directly with the substrate and that the other identified residues may contribute to maintenance of protein conformation.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

Toshiko Kasahara, and Masaji Ishiguro, and Michihiro Kasahara
May 2003, The Biochemical journal,
Toshiko Kasahara, and Masaji Ishiguro, and Michihiro Kasahara
November 1990, Molecular and cellular biology,
Toshiko Kasahara, and Masaji Ishiguro, and Michihiro Kasahara
February 2000, The Journal of biological chemistry,
Toshiko Kasahara, and Masaji Ishiguro, and Michihiro Kasahara
October 2011, Biochemistry,
Toshiko Kasahara, and Masaji Ishiguro, and Michihiro Kasahara
January 1998, Folia microbiologica,
Toshiko Kasahara, and Masaji Ishiguro, and Michihiro Kasahara
October 1998, The Journal of biological chemistry,
Toshiko Kasahara, and Masaji Ishiguro, and Michihiro Kasahara
December 2004, Proceedings of the National Academy of Sciences of the United States of America,
Toshiko Kasahara, and Masaji Ishiguro, and Michihiro Kasahara
July 1997, The Journal of biological chemistry,
Toshiko Kasahara, and Masaji Ishiguro, and Michihiro Kasahara
August 1992, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
Toshiko Kasahara, and Masaji Ishiguro, and Michihiro Kasahara
July 2017, Cellular microbiology,
Copied contents to your clipboard!