[Natural alpha-conotoxins and their synthetic analogues in studies of nicotinic acetylcholine receptors]. 2006

I E Kasheverov, and Iu N Utkin, and V I Tsetlin

alpha-Conotoxins, peptide neurotoxins from poisonous marine snails of the genus Conus that highly specifically block nicotinic acetylcholine receptors (AChRs) of various types, are reviewed. Preliminarily, the structural organization of AChRs of the muscular and neuronal types, their involvement in physiological processes, and their role in various diseases are briefly discussed. In this connection, the necessity of quantitative determination of AChR subtypes using neurotoxins and other approaches is substantiated. The chemical structure, spatial organization, and specificity of alpha-conotoxins are mainly discussed, taking into consideration the recent results on the ability of alpha-conotoxins to interact with muscular or neuronal hetero- and homooligomeric AChRs exhibiting a high species specificity. Particular emphasis is placed upon a thorough characterization of the surfaces of interaction of alpha-conotoxins with AChRs using synthetic analogues of alpha-conotoxins, mutations in AChRs, and pairwise mutations in both alpha-conotoxins and AChRs. The discovery in 2001 of the acetylcholine-binding protein from the pond snail Lymnaea stagnalis and the determination of its crystalline structure led to rapid progress in understanding the structural organization of ligand-binding domains of AChRs with which alpha-conotoxins also interact. We discuss the interaction of various alpha-conotoxins with acetylcholine-binding proteins, the recently reported X-ray structure of the complex of the acetylcholine-binding protein from Aplysia californica with the alpha-conotoxin analogue PnIA, and the application of this structure to the modeling of complexes of alpha-conotoxins with various AChRs.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D052078 Conus Snail A genus of cone-shaped marine snails in the family Conidae, class GASTROPODA. It comprises more than 600 species, many containing unique venoms (CONUS VENOMS) with which they immobilize their prey. Conus,Conus Snails,Snail, Conus
D018733 Nicotinic Antagonists Drugs that bind to nicotinic cholinergic receptors (RECEPTORS, NICOTINIC) and block the actions of acetylcholine or cholinergic agonists. Nicotinic antagonists block synaptic transmission at autonomic ganglia, the skeletal neuromuscular junction, and at central nervous system nicotinic synapses. Antagonists, Nicotinic
D020916 Conotoxins Peptide neurotoxins from the marine fish-hunting snails of the genus CONUS. They contain 13 to 29 amino acids which are strongly basic and are highly cross-linked by disulfide bonds. There are three types of conotoxins, omega-, alpha-, and mu-. OMEGA-CONOTOXINS inhibit voltage-activated entry of calcium into the presynaptic membrane and therefore the release of ACETYLCHOLINE. Alpha-conotoxins inhibit the postsynaptic acetylcholine receptor. Mu-conotoxins prevent the generation of muscle action potentials. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) alpha-Conotoxins,mu-Conotoxins,Conotoxin,alpha-Conotoxin,mu-Conotoxin,alpha Conotoxin,alpha Conotoxins,mu Conotoxin,mu Conotoxins

Related Publications

I E Kasheverov, and Iu N Utkin, and V I Tsetlin
June 2009, Acta pharmacologica Sinica,
I E Kasheverov, and Iu N Utkin, and V I Tsetlin
September 1991, Biochemistry,
I E Kasheverov, and Iu N Utkin, and V I Tsetlin
June 2004, European journal of biochemistry,
I E Kasheverov, and Iu N Utkin, and V I Tsetlin
June 2003, Biochemical Society transactions,
I E Kasheverov, and Iu N Utkin, and V I Tsetlin
December 2007, Molecular pharmacology,
I E Kasheverov, and Iu N Utkin, and V I Tsetlin
May 2014, Marine drugs,
I E Kasheverov, and Iu N Utkin, and V I Tsetlin
July 1995, Molecular pharmacology,
I E Kasheverov, and Iu N Utkin, and V I Tsetlin
November 2018, Marine drugs,
I E Kasheverov, and Iu N Utkin, and V I Tsetlin
September 1997, The Journal of biological chemistry,
I E Kasheverov, and Iu N Utkin, and V I Tsetlin
June 2005, Current opinion in pharmacology,
Copied contents to your clipboard!