Differential effects of HOXB4 on nonhuman primate short- and long-term repopulating cells. 2006

Xiao-Bing Zhang, and Brian C Beard, and Katherine Beebe, and Barry Storer, and R Keith Humphries, and Hans-Peter Kiem
Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.

BACKGROUND Hematopoietic stem cells (HSCs) or repopulating cells are able to self-renew and differentiate into cells of all hematopoietic lineages, and they can be enriched using the CD34 cell surface marker. Because of this unique property, HSCs have been used for HSC transplantation and gene therapy applications. However, the inability to expand HSCs has been a significant limitation for clinical applications. Here we examine, in a clinically relevant nonhuman primate model, the ability of HOXB4 to expand HSCs to potentially overcome this limitation. RESULTS Using a competitive repopulation assay, we directly compared in six animals engraftment of HOXB4GFP (HOXB4 green fluorescent protein) and control (yellow fluorescent protein [YFP])-transduced and expanded CD34+ cells. In three animals, cells were infused after a 3-d transduction culture, while in three other animals cells were infused after an additional 6-9 d of ex vivo expansion. We demonstrate that HOXB4 overexpression resulted in superior engraftment in all animals. The most dramatic effect of HOXB4 was observed early after transplantation, resulting in an up to 56-fold higher engraftment compared to the control cells. At 6 mo after transplantation, the proportion of marker gene-expressing cells in peripheral blood was still up to 5-fold higher for HOXB4GFP compared to YFP-transduced cells. CONCLUSIONS These data demonstrate that HOXB4 overexpression in CD34+ cells has a dramatic effect on expansion and engraftment of short-term repopulating cells and a significant, but less pronounced, effect on long-term repopulating cells. These data should have important implications for the expansion and transplantation of HSCs, in particular for cord blood transplantations where often only suboptimal numbers of HSCs are available.

UI MeSH Term Description Entries
D008164 Luminescent Proteins Proteins which are involved in the phenomenon of light emission in living systems. Included are the "enzymatic" and "non-enzymatic" types of system with or without the presence of oxygen or co-factors. Bioluminescent Protein,Bioluminescent Proteins,Luminescent Protein,Photoprotein,Photoproteins,Protein, Bioluminescent,Protein, Luminescent,Proteins, Bioluminescent,Proteins, Luminescent
D008254 Macaca nemestrina A species of the genus MACACA which inhabits Malaya, Sumatra, and Borneo. It is one of the most arboreal species of Macaca. The tail is short and untwisted. M. leonina,Macaca nemestrina leonina,Macaca nemestrina pagensis,Macaca nemestrina siberu,Macaca siberu,Monkey, Pig-Tailed,Pagai Macaque,Pig-Tail Macaque,Pig-Tailed Macaque,Pig-Tailed Monkey,M. pagensis,Macaca pagensis,Monkey, Pigtail,Monkey, Pigtailed,Pigtail Macaque,Macaque, Pagai,Macaque, Pig-Tail,Macaque, Pig-Tailed,Macaque, Pigtail,Monkey, Pig Tailed,Pagai Macaques,Pig Tail Macaque,Pig Tailed Macaque,Pig Tailed Monkey,Pig-Tail Macaques,Pig-Tailed Macaques,Pig-Tailed Monkeys,Pigtail Macaques,Pigtail Monkey,Pigtail Monkeys,Pigtailed Monkey,Pigtailed Monkeys
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012190 Retroviridae Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES). Leukemogenic Viruses,Leukoviruses,Oncornaviruses,Oncovirinae,Oncoviruses,Oncoviruses, Type C,RNA Tumor Viruses,Retroviruses,Type C Oncoviruses,C Oncovirus, Type,C Oncoviruses, Type,Leukemogenic Virus,Leukovirus,Oncornavirus,Oncovirus,Oncovirus, Type C,RNA Tumor Virus,Retrovirus,Tumor Virus, RNA,Tumor Viruses, RNA,Type C Oncovirus,Virus, Leukemogenic,Virus, RNA Tumor,Viruses, Leukemogenic,Viruses, RNA Tumor
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

Xiao-Bing Zhang, and Brian C Beard, and Katherine Beebe, and Barry Storer, and R Keith Humphries, and Hans-Peter Kiem
October 2015, Stem cells and development,
Xiao-Bing Zhang, and Brian C Beard, and Katherine Beebe, and Barry Storer, and R Keith Humphries, and Hans-Peter Kiem
July 1994, American journal of respiratory and critical care medicine,
Xiao-Bing Zhang, and Brian C Beard, and Katherine Beebe, and Barry Storer, and R Keith Humphries, and Hans-Peter Kiem
January 1997, Stem cells (Dayton, Ohio),
Xiao-Bing Zhang, and Brian C Beard, and Katherine Beebe, and Barry Storer, and R Keith Humphries, and Hans-Peter Kiem
May 2006, Blood,
Xiao-Bing Zhang, and Brian C Beard, and Katherine Beebe, and Barry Storer, and R Keith Humphries, and Hans-Peter Kiem
January 1996, Annals of oncology : official journal of the European Society for Medical Oncology,
Xiao-Bing Zhang, and Brian C Beard, and Katherine Beebe, and Barry Storer, and R Keith Humphries, and Hans-Peter Kiem
July 2010, The Journal of clinical investigation,
Xiao-Bing Zhang, and Brian C Beard, and Katherine Beebe, and Barry Storer, and R Keith Humphries, and Hans-Peter Kiem
October 2002, Blood,
Xiao-Bing Zhang, and Brian C Beard, and Katherine Beebe, and Barry Storer, and R Keith Humphries, and Hans-Peter Kiem
March 1999, Blood,
Xiao-Bing Zhang, and Brian C Beard, and Katherine Beebe, and Barry Storer, and R Keith Humphries, and Hans-Peter Kiem
March 2011, The Journal of clinical investigation,
Xiao-Bing Zhang, and Brian C Beard, and Katherine Beebe, and Barry Storer, and R Keith Humphries, and Hans-Peter Kiem
July 2014, Experimental hematology,
Copied contents to your clipboard!