A neuroactive steroid 5alpha-androstane-3alpha,17beta-diol regulates androgen receptor level in astrocytes. 2006

Olga A Agapova, and Paula E Malone, and M Rosario Hernandez
Department of Ophthalmology and Visual Sciences, Washington University, School of Medicine, Saint Louis, Missouri 63110, USA. Agapova@vision.wustl.edu

Optic nerve head (ONH) astrocytes from patients with glaucomatous optic neuropathy exhibit increased production of 5alpha-androstane-3alpha,17beta-diol (3alpha-diol), a neuroactive metabolite of 5alpha-dihydrotestosterone (5alpha-DHT). To determine whether ONH astrocytes are androgen target cells, and whether 3alpha-diol is capable of regulating astrocyte functions, we studied the response of human ONH astrocytes to 3alpha-diol compared with 17beta-hydroxy-17alpha-methyl-estra-4,9,11-trien-3-one (R1881), a synthetic 5alpha-DHT agonist. In ONH astrocytes, both 3alpha-diol and R1881 increased protein levels of androgen receptor (AR) and glial fibrillary acidic protein (GFAP), however, only R1881 also increased the AR mRNA level and astrocyte proliferation. Both R1881 and 3alpha-diol rapidly activate the mitogen-activated protein kinase (MAPK) signaling pathway in ONH astrocytes, as confirmed by phosphorylation of extracellular signal-regulated kinase (ERK). 3Alpha-diol also activates the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. 3Alpha-diol regulates the increase of AR protein level and the phosphorylation through the PI3K/Akt pathway, whereas R1881 regulates them through the MAPK/ERK pathway. Our findings demonstrate that human ONH astrocytes are androgen target cells and respond to androgens by the rapid activation of cell signaling. The activation of the PI3K/Akt pathway by 3alpha-diol may regulate various properties of astrocytes, including cell motility and survival, and may play a role in the formation and maintenance of the reactive phenotype of ONH astrocytes in glaucoma.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011944 Receptors, Androgen Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA. Androgen Receptors,5 alpha-Dihydrotestosterone Receptor,Androgen Receptor,Dihydrotestosterone Receptors,Receptor, Testosterone,Receptors, Androgens,Receptors, Dihydrotestosterone,Receptors, Stanolone,Stanolone Receptor,Testosterone Receptor,5 alpha Dihydrotestosterone Receptor,Androgens Receptors,Receptor, 5 alpha-Dihydrotestosterone,Receptor, Androgen,Receptor, Stanolone,Stanolone Receptors,alpha-Dihydrotestosterone Receptor, 5
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D015113 Androstane-3,17-diol The unspecified form of the steroid, normally a major metabolite of TESTOSTERONE with androgenic activity. It has been implicated as a regulator of gonadotropin secretion. 5 Androstane 3,17 diol,5 alpha-Androstane-3 alpha,17 beta-diol,5 alpha-Androstane-3 beta,17 alpha-diol,5 alpha-Androstane-3 beta,17 beta-diol,5 alpha-Androstane-3alpha,17 beta-diol,5 beta-Androstane-3 alpha,17 beta-diol,5-Androstane-3,17-diol,5alpha-Androstane-3beta,17alpha-diol,5 alpha Androstane 3 alpha,17 beta diol,5 alpha Androstane 3 beta,17 alpha diol,5 alpha Androstane 3 beta,17 beta diol,5 alpha Androstane 3alpha,17 beta diol,5 beta Androstane 3 alpha,17 beta diol,5alpha Androstane 3beta,17alpha diol,Androstane 3,17 diol
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Olga A Agapova, and Paula E Malone, and M Rosario Hernandez
November 1977, Steroids,
Olga A Agapova, and Paula E Malone, and M Rosario Hernandez
July 2004, Molecular and cellular endocrinology,
Olga A Agapova, and Paula E Malone, and M Rosario Hernandez
August 1976, Endocrinology,
Olga A Agapova, and Paula E Malone, and M Rosario Hernandez
October 1977, Steroids,
Olga A Agapova, and Paula E Malone, and M Rosario Hernandez
March 1976, The Journal of clinical endocrinology and metabolism,
Olga A Agapova, and Paula E Malone, and M Rosario Hernandez
August 1978, Acta endocrinologica,
Olga A Agapova, and Paula E Malone, and M Rosario Hernandez
July 2003, Theriogenology,
Olga A Agapova, and Paula E Malone, and M Rosario Hernandez
January 1981, Gerontology,
Copied contents to your clipboard!