Factors influencing midazolam hydroxylation activity in human liver microsomes. 2006

Ping He, and Michael H Court, and David J Greenblatt, and Lisa L von Moltke
Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA.

The cytochrome P450 3A (CYP3A) subfamily (mainly CYP3A4 and CYP3A5) is responsible for metabolizing approximately half of currently marketed drugs, but with considerable interindividual variability in expression and function. To investigate factors contributing to this variability, rates of midazolam (MDZ) 1'-hydroxylation and CYP3A4 and CYP3A5 protein content were determined using a set of 54 human liver microsomes (HLMs). Genetic factors investigated included CYP3A4 and CYP3A5 single nucleotide polymorphisms (SNPs) and haplotypes, CYP3A4 mRNA alternative splicing, and CYP3A4 transcriptional start and polyadenylation sites. Demographic and environmental factors investigated included age, gender, and histories of smoking and alcohol consumption. MDZ 1'-hydroxylation rates varied from 0.025 to 3.106 nmol/min/mg protein, with significant correlation to CYP3A4 protein content (r(s) = 0.92, P < 0.001) but less robust correlation to CYP3A5 protein content (r(s) = 0.60, P < 0.001). We identified eight CYP3A4 SNPs (five novel) and nine CYP3A5 SNPs (one novel), as well as seven CYP3A4 and two CYP3A5 haplotypes (all novel). No influence of genotype or haplotype on MDZ 1'-hydroxylation rate was observed, although CYP3A5*3A (g.6986a>g; g.31611c>t) carriers had lower CYP3A5 protein content compared with noncarriers (P = 0.004). No alternative splicing of CYP3A4 mRNA was found. Likewise, only a single transcriptional start site and polyadenylation site for CYP3A4 mRNA were identified. Subjects with a history of alcohol consumption had 2.2-fold higher median MDZ 1'-hydroxylation (P = 0.017), whereas no influence of age, gender, or smoking was evident. In conclusion, the investigated genetic factors did not contribute substantially to the large interindividual variability in midazolam hydroxylation, although alcohol consumption has a discernable but modest influence.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008874 Midazolam A short-acting hypnotic-sedative drug with anxiolytic and amnestic properties. It is used in dentistry, cardiac surgery, endoscopic procedures, as preanesthetic medication, and as an adjunct to local anesthesia. The short duration and cardiorespiratory stability makes it useful in poor-risk, elderly, and cardiac patients. It is water-soluble at pH less than 4 and lipid-soluble at physiological pH. Dormicum,Midazolam Hydrochloride,Midazolam Maleate,Ro 21-3981,Versed,Hydrochloride, Midazolam,Maleate, Midazolam,Ro 21 3981,Ro 213981
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010597 Pharmacogenetics A branch of genetics which deals with the genetic variability in individual responses to drugs and drug metabolism (BIOTRANSFORMATION). Pharmacogenomics
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005260 Female Females

Related Publications

Ping He, and Michael H Court, and David J Greenblatt, and Lisa L von Moltke
December 2010, Xenobiotica; the fate of foreign compounds in biological systems,
Ping He, and Michael H Court, and David J Greenblatt, and Lisa L von Moltke
January 1966, Advances in enzyme regulation,
Ping He, and Michael H Court, and David J Greenblatt, and Lisa L von Moltke
January 1986, Research communications in chemical pathology and pharmacology,
Ping He, and Michael H Court, and David J Greenblatt, and Lisa L von Moltke
September 1996, Journal of clinical pharmacology,
Ping He, and Michael H Court, and David J Greenblatt, and Lisa L von Moltke
October 1999, Pharmacology & toxicology,
Ping He, and Michael H Court, and David J Greenblatt, and Lisa L von Moltke
March 2000, Drug metabolism and disposition: the biological fate of chemicals,
Ping He, and Michael H Court, and David J Greenblatt, and Lisa L von Moltke
December 1968, The Kumamoto medical journal,
Ping He, and Michael H Court, and David J Greenblatt, and Lisa L von Moltke
January 1989, Drug metabolism and disposition: the biological fate of chemicals,
Ping He, and Michael H Court, and David J Greenblatt, and Lisa L von Moltke
December 1979, Biochemical pharmacology,
Ping He, and Michael H Court, and David J Greenblatt, and Lisa L von Moltke
July 2005, Molecular genetics and metabolism,
Copied contents to your clipboard!