Sequence specificity of Bacillus subtilis DNA gyrase in vivo. 1991

V I Bashkirov, and D J Zvingila
Institute of Gene Biology, USSR Academy of Sciences, Moscow.

Linearization of pBG0 (a hydrid between Escherichia coli plasmid pBR322 and Staphylococcus aureus plasmid pUB110) was performed by lysis of the oxolinic acid treated Bacillus subtilis protoplasts with sodium dodecyl sulfate. This plasmid DNA linearization was used both for a detailed mapping of DNA gyrase cleavage sites of various strength and for the nucleotide sequence determinations at the points of gyrase-mediated scissions by introducing the XhoI linker DNA. A total of 40 plasmids carrying inserted XhoI linker were sequenced by labeling 3' termini of XhoI sites; 38 of them were found to contain a duplication of four base-pairs of the plasmid sequence flanking the linker, which were characteristic of the oxolinic acid-induced DNA cleavage by E. coli DNA gyrase in vitro and in vivo. The relative strength of these sequenced sites was established by comparing their positions to the sites mapped on the appropriate plasmid genome. This allowed us to propose a consensus sequence of B. subtilis DNA gyrase in vivo cleavage site: [sequence: see text] where N is any nucleotide. The bases in parentheses were preferred secondarily. The involvement of DNA gyrase in illegitimate recombination events in Bacillus subtilis is discussed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010093 Oxolinic Acid Synthetic antimicrobial related to NALIDIXIC ACID and used in URINARY TRACT INFECTIONS. Gramurin,Sodium Oxolinate,Acid, Oxolinic,Oxolinate, Sodium
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

V I Bashkirov, and D J Zvingila
January 1991, Doklady Akademii nauk SSSR,
V I Bashkirov, and D J Zvingila
March 1980, Journal of bacteriology,
V I Bashkirov, and D J Zvingila
September 1981, Journal of virology,
V I Bashkirov, and D J Zvingila
April 2018, Molecular microbiology,
V I Bashkirov, and D J Zvingila
May 1987, Nucleic acids research,
V I Bashkirov, and D J Zvingila
September 1976, Journal of molecular biology,
V I Bashkirov, and D J Zvingila
December 1971, Journal of immunology (Baltimore, Md. : 1950),
V I Bashkirov, and D J Zvingila
July 1982, Journal of bacteriology,
V I Bashkirov, and D J Zvingila
August 1991, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
Copied contents to your clipboard!